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ABSTRACT :  

This document offers a geometric perspective on plane trigonometry, based on classical constructions using squares, circles, and 

triangles. Using only fundamental mathematical concepts, we are able to determine the exact values of the sine and cosine 

trigonometric functions for specific angles such as 15°, 30°, 45°, and 75° without a calculator. These results are obtained using 

construction techniques inspired in particular by the work of Abu al-Wafa. We then establish the laws of cosine using elementary 

geometric constructions and prove Mollweide's formulas based on the characteristics of isosceles triangles and the laws of sine. This 

approach highlights the link between Euclidean geometry and trigonometry, while proving to be a valuable educational tool for 

teaching at secondary and university level. 
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1.  INTRODUCTION 

The origins of trigonometry (from the Greek trigonos, triangle) can be traced back to ancient Egypt, Mesopotamia, and the Indus 

Valley more than 4,000 years ago. The first use of sine was recorded in India between 800 and 500 BC [1]. It therefore plays an 

essential role in mathematics, both for its practical applications and for its importance in the analysis of geometric relationships. 

From a historical perspective, trigonometric functions emerged in response to geometric problems associated with triangles, circles, 

and angular measurements [2]. Euclid's seminal work laid the foundations of plane geometry, on which much of classical 

trigonometry is based [3].  

In modern teaching, the values of the sine and cosine of notable angles are often presented as results to be memorized, without 

always highlighting their geometric origin. However, an approach based on construction not only provides a better understanding 

of these results, but also strengthens learners' logical reasoning and spatial visualization [4]. The geometric methods developed by 

mathematicians such as Abu al-Wafa perfectly illustrate this constructive approach [5]. 

The aim of this work is to show how standard trigonometric values can be determined from simple constructions involving squares, 

circles, and specific triangles. We also present a geometric demonstration of the cosine laws and Mollweide's formulas, in order to 

illustrate the internal consistency of plane trigonometry and its roots in Euclidean geometry [6,7]. 

2. Mathematical tools 

The results used in this section are based primarily on classical Euclidean geometry as set out in Euclid's Elements [3] and 

reproduced in numerous modern geometry textbooks [4]. 

Proposition 1.1 :[3] 

Let (𝐶) be a circle with center𝑂. Consider an arc A͡B of this circle. 

If 𝑀 is a point on the circle (𝐶) on the major arc A͝B then 𝐴𝑂𝐵̂ = 2𝐴𝑀𝐵̂. 

Sine theorem:[8] 

Ic 𝐴𝐵𝐶 is any triangle such that 𝐴𝐵 = 𝑐, 𝐴𝐶 = 𝑏, 𝐵𝐶 = 𝑐 and 𝐶𝐵𝐴̂ = 𝛽, 𝐴𝐶𝐵̂ = 𝛾, 𝐵𝐴𝐶̂ = 𝛼. Then, 
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𝑎

sin(𝛼)
=

𝑏

sin(𝛽)
=

𝑐

sin(𝛾)
 

Theorem 1.1 (Pythagorean theorem) : 

In a right triangle, the square of the length of the hypotenuse (or side opposite the right angle) is equal to the sum of the squares of 

the lengths of the other two sides. 

This theorem remains a fundamental pillar of plane geometry. It is demonstrated in several documents such as [3,8] and remains 

central to the study of triangles and trigonometric constructions.  

The two figures presented in this paper were constructed using Mathgraph32 dynamic geometry software [8]. This software was 

used to create precise Euclidean constructions involving specific squares, circles, and triangles. 

The purpose of these constructions is to determine exact trigonometric values without using a calculator, and to demonstrate the 

laws of cosine and Mollweide's formulas, relying solely on geometric relationships between lengths and angles. 

MathGraph32 is used here exclusively as a construction and visualization tool, allowing the geometric configurations necessary for 

the demonstrations to be clearly represented. The results obtained are based entirely on geometric and analytical arguments 

developed in the text, independently of the software. 

3. Calculations of the sine and cosine functions of angles 𝟏𝟓° ; 30° ;  𝟒𝟓° ; 𝟔𝟎° and 𝟕𝟓°  through a square and triangles 

Using constructions based on squares, equilateral triangles, and isosceles right triangles, we geometrically determine the exact values 

of sine and cosine in angles of 15°, 30°, 45°, 60°, and 75°. 

3.1 Method and construction 

Method of construction 2.1 : 

1. Construct a square 𝐴𝐵𝐶𝐷 such that its diagonals intersect at point  𝑂 and its sides measure 𝑎. 

2. Draw a circle with center𝐴  passing through 𝐾  and two lines (𝐷) and (𝐷’)  tangent  to the circle passing through point 𝐶 . 

3. Label 𝐸 and 𝐹 he two points of intersection of these lines and the square belonging to segments [𝐴𝐷] and [𝐴𝐵] respectively as. 

𝐸𝐵 = 𝐹𝐷 = 𝑥   

4. Connect points 𝐸, 𝐹 and 𝐶. Line (𝐸𝐹) intersect (𝐴𝐶) at point 𝐻. 

Construction 2.2 : 

 

Figure 1 : Geometric construction enabling the determination of exact trigonometric values in specified angles 
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For a modern pedagogical approach to geometry, we used Mathgraph32 software [9] to graphically illustrate the theoretical results. 

Thus, the calculations of the sine and cosine of the angles mentioned above derive directly from the properties of equilateral and 

isosceles right triangles, combined with the Pythagorean theorem. 

3.2 Sine and cosine of 𝟑𝟎° and 𝟔𝟎° 

According to Ab𝑢̅l Waf𝑎̅′s method, triangle 𝐸𝐹𝐶 is equilateral i.e  𝐸𝐹 = 𝐹𝐶 = 𝐶𝐸 = 𝑦 and  𝐸𝐹𝐶̂ = 𝐹𝐶𝐸̂ = 𝐶𝐸𝐹̂ = 60°.   Since 𝐸 

andt 𝐹 symmetrical with respect to (𝐴𝐶) and (𝐸𝐹) ∩  (𝐴𝐶) = 𝐻, the intersection point 𝐻 is the midpoint of  [𝐸𝐹]. It also represents 

the foot of the height (and/or the bisector according to the properties of the equilateral triangle) from the vertex 𝐶 of triangle 𝐸𝐹𝐶, 

so triangle 𝐸𝐻𝐶 is a right triangle at 𝐻 and according to the Pythagorean theorem, we have 𝐸𝐶2 = 𝐸𝐻2 + 𝐻𝐶2 . 

𝐻 is the midpoint of [𝐸𝐹] implies that  𝐻𝐸 =
𝐸𝐹

2
=

𝑦

2
 and (𝐻𝐶) the bisector originating from vertex 𝐶 , of equilateral triangle 𝐸𝐹𝐶, 

cause 𝐻𝐶𝐸̂ =
𝐹𝐶𝐸̂

2
= 30° . 

As a result,  sin( 𝐻𝐶𝐸̂) = sin(30°) =
𝐻𝐸

𝐸𝐶
=

𝑦

2

𝑦
=

1

2
 ; and 

cos(𝐻𝐶𝐸 ̂ ) = cos(30°) =
𝐻𝐶

𝐸𝐶
=

√𝐸𝐶2−𝐸𝐾2

𝐸𝐶
=

√𝑦2−(
𝑦

2
)

2

𝑦
=

𝑦√3

2

𝑦
=

√3

2
. 

Sin( 𝐶𝐸𝐹̂) = sin(60°) =
𝐻𝐶

𝐸𝐶
=

𝑦√3

2

𝑦
=

√3

2
 ; and   cos(𝐶𝐸𝐹̂) = cos(60°) =

𝐻𝐸

𝐸𝐶
=

1

2
 

3.3 Sine et cosine of angle 𝟒𝟓° 

Triangle 𝐵𝐷𝐶 is an isosceles right triangle a 𝐶 beacause 𝐴𝐵𝐶𝐷 is a square, so 𝐵𝐶 = 𝐷𝐶 = 𝑎 and 𝐷𝐶𝐵̂ = 90°. According to the 

properties of isosceles triangles, the angles at the base are equal. 

 Thus, (𝐵𝐷𝐶̂ + 𝐷𝐶𝐵̂ + 𝐶𝐵𝐷̂ = 180°  and 𝐵𝐷𝐶̂ = 𝐶𝐵𝐷̂) ⇒ 𝐵𝐷𝐶̂ = 𝐶𝐵𝐷̂ = 45°. 

Cos(𝐶𝐵𝐷 ̂ ) = cos(45°) =
𝐵𝐶

𝐵𝐷
=

𝐵𝐶

√𝐷𝐶2 + 𝐵𝐶2
=

𝑎

𝑎√2
=

√2

2
 

sin(𝐶𝐵𝐷 ̂ ) = sin(45°) =
𝐷𝐶

𝐵𝐷
=

𝐷𝐶

√𝐷𝐶2 + 𝐵𝐶2
=

𝑎

𝑎√2
=

√2

2
. 

3.4 Sine and cosine of angles 𝟏𝟓° and 𝟕𝟓° 

Points 𝐸 and 𝐹  are symmetrical with respect to the line (𝐴𝐶) and 𝐴𝐵𝐶𝐷 is a square, so triangle 𝐸𝐴𝐹 is an isosceles right triangle 

at 𝐴 and 𝐹𝐸𝐴̂ = 𝐴𝐹𝐶̂ = 45°.  

Since 𝐹𝐸𝐴̂ + 𝐶𝐸𝐹̂ + 𝐵𝐸𝐶̂ = 180°  (because the three angles form a flat angle) and 𝐶𝐸𝐹̂ = 60°, then 𝐵𝐸𝐶̂ = 180° − 45° − 60° =
75°. 

The 𝐸𝐶𝐵 triangle is a right triangle at 𝐵 (since 𝐴𝐵𝐶𝐷 is a square) and 𝐸𝐶𝐵̂ + 𝐶𝐵𝐸̂ + 𝐵𝐸𝐶̂ = 180°.  

Thus, 𝐸𝐶𝐵̂ = 180° − (𝐶𝐵𝐸̂ + 𝐵𝐸𝐶̂) = 180° − (90° + 75°) = 15°  .  

Furthermore, considering triangles 𝐸𝐴𝐹  and 𝐵𝐴𝐷 which are isosceles right triangles at 𝐴, we have: 

{
𝐴𝐹 = 𝐴𝐷 − 𝐹𝐷
𝐴𝐸 = 𝐴𝐵 − 𝐸𝐵

 ⟹ {
𝐴𝐹 = 𝑎 − 𝑥
𝐴𝐸 = 𝑎 − 𝑥

  and according to the Pythagorean theorem, 

 𝐸𝐹2 = 𝐴𝐹2 + 𝐴𝐸2 ⟹ 𝑦2 = (𝑎 − 𝑥)2 + (𝑎 − 𝑥)2    ⟹  𝑦2 = 2(𝑎 − 𝑥)2          (∗) 
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In the 𝐸𝐶𝐵 triangle, we have : 𝐸𝐶2 = 𝐸𝐵2 + 𝐵𝐶2 ⟹ 𝑦2 = 𝑥2 + 𝑎2                      (∗∗) . 

By comparing (∗) and (∗∗),    𝑥2 + 𝑎2 = 2(𝑎 − 𝑥)2 ⟹ 𝑥2 − 4𝑎𝑥 + 𝑎2 = 0 

Let's determine 𝑥 in terms of 𝑎 (with 𝑥 < 𝑎) using the discriminant : Δ = 12𝑎2 ⟹ √Δ =  2𝑎√3 

𝑥 =
−4𝑎−2𝑎√3

2
< 0 or =

4𝑎−2𝑎√3

2
> 0 , therefore 𝑥 = (2 − √3)𝑎 ⟹ 𝐸𝐵 = (2 − √3)𝑎. 

Replacing 𝑥 with its expression in    (∗∗) we obtain 𝐸𝐶2 = ((2 − √3 )𝑎)
2

+ 𝑎2 = (8 − 4√3 )𝑎2 

Therefore   𝐸𝐶 = 2𝑎√2 − √3. 

As a result, sin 𝐸𝐶𝐵̂ = sin(15°) =
𝐸𝐵

𝐸𝐶
=

(2−√3)𝑎

2𝑎√2−√3
=

√2−√3

2
=

√6−√2

4
 because (√6 − √2)2 = 4(2 − √3)  

      cos 𝐸𝐶𝐵̂ = cos 15° =
𝐵𝐶

𝐸𝐶
=

𝑎

2𝑎√2−√3
=

√2−√3

2(2−√3) 
=

√2−√3(2+√3)

2
=

(√6−√2)(2+√3)

4
=

√6+√2

4
 

Finally, sin(75°) = cos(15°) =
√6+√2

4
    and  cos(75°) = sin(15°) =

√6−√2

4
  because angles 𝐸𝐶𝐵̂  and 𝐵𝐸𝐶̂ are complementary. 

4. The laws of cosine and Mollweide’s formulas 

4.1 Method and construction 

Construction method 3.1 : 

• Construct a triangle 𝐴𝐵𝐶 such that 𝐴𝐵 = 𝑐, 𝐴𝐶 = 𝑏, 𝐵𝐶 = 𝑐 and 𝐶𝐵𝐴̂ = 𝛽, 𝐴𝐶𝐵̂ = 𝛾, 𝐵𝐴𝐶̂ = 𝛼. 

• Place a point 𝐷  on the segment [𝐵𝐶] such that 𝐴𝐶 = 𝑏 = 𝐶𝐷. 

•  Connect points 𝐴, 𝐷 and 𝐵. 

• Place 𝐸 a point one the line (𝐴𝐶) located outside [𝐴𝐶],  on the side of point 𝐶, such that 𝐶𝐸 = 𝐶𝐵 = 𝑎. 

• Connect point 𝐴, 𝐸 and 𝐵. 

• Draw the height from vertex 𝐵 of triangle 𝐴𝐵𝐶. 

• Label the foot of this height 𝐻. 
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Construction 3.2 : 

 

Figure 2 : Geometric construction used to demonstrate the cosine laws and Mollweide formulas 

This figure allows us to clearly visualize the metric relationships between the sides and angles of the triangle, facilitating 

understanding of the cosine law, Mollweide's formula, and their geometric proofs. 

4.2 The laws of cosine 

Based on the height diagram in any triangle and the application of the Pythagorean theorem to the right-angled triangles obtained, 

we demonstrate the law of cosines. 

In triangle 𝐴𝐵𝐶,  point 𝐻 is the foot of the height from vertex 𝐵, so lines (𝐵𝐻) and (𝐴𝐶) are perpendicular (by definition of a height 

in a triangle). 

Thus, triangles 𝐴𝐵𝐻 and 𝐻𝐵𝐶 are right-angled at 𝐻, so 𝐴𝐻 = 𝐴𝐶 − 𝐻𝐶 and, according to Pythagoras' theorem, 𝐴𝐵2 = 𝐵𝐻2 +
𝐴𝐻2. 

As a result, sin 𝛾 =
𝐵𝐻

𝐵𝐶
⟹ 𝐵𝐻 = 𝐵𝐶 sin 𝛾 and cos 𝛾 =

𝐻𝐶

𝐵𝐶
 ⟹ 𝐻𝐶 = 𝐵𝐶 cos 𝛾  ; 

𝐴𝐵2 = 𝐵𝐻2 + 𝐴𝐻2 ⟹  𝐴𝐵2 = (𝐵𝐶 sin 𝛾)2 +  (𝐴𝐶 − 𝐵𝐶 cos 𝛾)2 

                                                             ⟹ 𝑐2 = (𝑎 sin 𝛾)2 + (𝑏 − 𝑎 cos 𝛾)2 

                                                             ⟹ 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛾 

To find the other two formulas, simply follow the same procedures by drawing the heights from vertices 𝐴 and 𝐶 . 

4.3 Mollweide’s formula 

We derive these formulas from the properties of isosceles triangles and the laws of sines.  They are commonly used as a verification 

tool in trigonometry and appear in many classical and modern treatises [5,6]. 

Triangle  𝐴𝐶𝐷 is isosceles at 𝐶 because 𝐶𝐷 = 𝐴𝐶 = 𝑏, therefore 𝐷𝐴𝐶̂ = 𝐶𝐷𝐴̂ =
𝛼+𝛽

2
. 

In triangle 𝐴𝐷𝐵,  we have :  𝐵𝐴𝐷̂ =
𝛼−𝛽

2
 , 𝐷𝐵𝐴̂ = 𝛽   and  𝐴𝐷𝐵̂ + 𝐷𝐵𝐴̂ + 𝐵𝐴𝐷̂ = 180° therefore 𝐴𝐷𝐵̂ = 180° − (𝐷𝐵𝐴̂ + 𝐵𝐴𝐷̂) =

180° −
𝛼+𝛽

2
. 
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Since 𝐶𝐸 = 𝐵𝐶 = 𝑎, triangle 𝐶𝐸𝐵 is isosceles at 𝐶 and the angles at the base are equal, i.e., 𝐶𝐸𝐵̂ = 𝐸𝐵𝐶̂. Since angle 𝐴𝐶𝐸̂ =

𝐴𝐶𝐵̂ + 𝐵𝐶𝐸̂ ⇒ 𝐵𝐶𝐸̂ = 𝐴𝐶𝐸̂ − 𝐴𝐶𝐵̂ = 180° − 𝛾 et 𝐶𝐸𝐵̂ + 𝐸𝐵𝐶̂ + 𝐵𝐶𝐸̂ = 180° ⇒  𝐶𝐸𝐵̂ = 𝐸𝐵𝐶̂ =
𝛾

2
. 

Therefore, according to the laws of sine, in triangle 𝐴𝐷𝐵,  we have : 

                                                       
𝐵𝐷

sin 𝐵𝐴𝐷̂
=

𝐴𝐵

sin(𝐴𝐷𝐵̂)
⇒

𝑎−𝑏

sin(
𝛼−𝛽

2
)

=
𝑐

sin(180°− 
𝛼+𝛽

2
)
 

                                                                                   ⇒
𝑎−𝑏

sin(
𝛼−𝛽

2
)

=
𝑐

sin(
𝛼+𝛽

2
)
 

                                                                                   ⇒
𝑎−𝑏

sin(
𝛼−𝛽

2
)

=
𝑐

sin(90°−
𝛾

2
)
 

                                                                                   ⇒
𝑎−𝑏

sin(
𝛼−𝛽

2
)

=
𝑐

cos(
𝛾

2
)
 

                                                                                   ⇒ (𝑎 − 𝑏) cos (
𝛾

2
) = 𝑐 sin (

𝛼−𝛽

2
) 

In triangle 𝐴𝐸𝐵, 𝐶𝐸𝐵̂ = 𝐴𝐸𝐵̂ and angle 𝐸𝐵𝐴̂ = 𝐸𝐵𝐶̂ + 𝐶𝐵𝐴̂ = 𝛽 +
𝛾

2
⇒ 𝐸𝐵𝐴̂ = 𝛽 + 90° −

𝛼+𝛽

2
= 90° −

𝛼−𝛽

2
 

Applying the law of sines, we have : 
𝐴𝐸

sin 𝐸𝐵𝐴̂
=

𝐴𝐵

sin 𝐴𝐸𝐵̂
⇒

𝑎+𝑏

sin(90°−
𝛼−𝛽

2
)

=
𝑐

sin(
𝛾

2
)
 

                      ⇒
𝑎+𝑏

cos(
𝛼−𝛽

2
)

=
𝑐

sin(
𝛾

2
)
 

                                                                                      ⇒ 𝑐 cos (
𝛼−𝛽

2
) = (𝑎 + 𝑏) sin (

𝛾

2
) 

5. Comparative discussion 

The exact trigonometric values and fundamental identities of plane trigonometry are well established in classical literature. They 

are generally obtained by algebraic or analytical methods, and often presented without detailed geometric proof. 

This work takes a different approach, favoring explicit geometric constructions that allow exact angle values to be calculated without 

the use of numerical tools. Furthermore, using Euclidean figures, we have demonstrated the laws of cosines and Mollweide's 

formulas. 

Almost similar geometric approaches appear in some classical works, but they are rarely developed in a unified and systematic 

manner. The interest of this work thus lies in the direct relationship between simple geometric constructions and fundamental 

trigonometric results, highlighting the internal consistency of plane trigonometry. 

This work is limited to Euclidean plane trigonometry and specific geometric configurations. The proposed constructions concern 

only common trigonometric values and do not cover all possible angles.  

Furthermore, no extension to more general frameworks, such as spherical trigonometry or advanced analytical methods, is 

envisaged. 

Finally, although figures allow us to obtain exact values and rigorous proofs, this approach remains essentially geometric and is not 

intended to replace traditional analytical methods, but rather to complement them. 

6. Conclusion 

In this article, we have highlighted the effectiveness of geometric constructions for studying trigonometric functions and the 

fundamental relationships between the sides and angles of a triangle. Determining the exact values of the sine and cosine of the 

angles mentioned, without a calculator, using the square and the equilateral triangle provides a better understanding of the origin of 

these results, which are often perceived as purely algebraic.  
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Geometric proofs of the cosine law and Mollweide's formulas show that these relationships are not simply formulas to be applied, 

but natural consequences of the properties of triangles and elementary trigonometric laws. This approach is consistent with classical 

work in Euclidean geometry. 

In conclusion, these results constitute a relevant teaching aid for trigonometry, as they promote geometric intuition, deductive 

reasoning, and a deep understanding of mathematical concepts at both the secondary and university levels. 
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