Rare Case of Haemolytic Anaemia Due to Pyruvate Kinase Deficiency (PKD)

Meimine Aa, Hemad Aa, Jiddou Md, Sidi Maouloud Ma, Abdelwehab Ec, Abdy Sa, Hindi Ca, Cheibeta Eb, Ahmed Vall Sa, Yeslem Jaroulah Ma

- ^a Hôpital Cheikh Zayed, Mauritanie
- ^b Centre Hospitalier National, Mauritanie
- ^c Centre Hospitalier d'Atar, Mauritanie
- d Hôpital militaire, Mauritanie

Received: 14 September 2025 Revised: 02 October 2025 Accepted: 16 October 2025

Abstract

Pyruvate kinase deficiency (PKD) is a rare autosomal recessive cause of congenital non-spherocytic haemolytic anaemia, resulting from mutations in the PKLR gene. We report a 14-year-old patient presenting with right hypochondrial pain, subicterus, and splenomegaly. Laboratory tests showed normocytic anaemia, reticulocytosis, indirect hyperbilirubinaemia, and reduced pyruvate kinase activity, confirming PKD. Imaging revealed biliary lithiasis and splenomegaly. PKD should be considered in cases of chronic haemolysis with indirect hyperbilirubinaemia. Early diagnosis and multidisciplinary follow-up improve outcomes.

Keywords: Pyruvate kinase deficiency; PKLR gene; haemolytic anaemia; splenomegaly; enzyme deficiency; case report

I. INTRODUCTION

Pyruvate kinase deficiency (PKD) is the most frequent cause of non-spherocytic haemolytic anaemia. It is an autosomal recessive disorder caused by mutations in the PKLR gene located on chromosome 1q22. To date, more than 190 mutations have been identified in this gene [1].

II. Epidemiology

The prevalence of PKD remains imprecise, estimated between 3 and 8 cases per million inhabitants [2]. Because of its rarity, diagnostic challenges, and broad clinical variability, many cases may remain undiagnosed, leading to an underestimation of its true frequency.

Heterozygous carriers are typically asymptomatic, making it difficult to evaluate their prevalence, which is nonetheless estimated between 0.15% and 6% [3,4].

III. Case Report

We report the case of a 14-year-old patient with no significant past medical history, who presented with right hypochondrial pain suggestive of hepatic colic.

Clinical examination revealed a patient in good general condition, with subicterus, moderately icteric conjunctivae, tenderness in the right upper quadrant (without guarding), stage II splenomegaly, and no evidence of ascites, cardiovascular collapse, or lymphadenopathy.

Laboratory findings:

- Haemoglobin: 8.5 g/dL

- MCV: 89 fL

- MCHC: 29.01%

International Journal of Science and Research Methodology (IJSRM)

Volume 28, Issue 10, October 2025 ijsrm.humanjournals.com ISSN: 2454-2008

- Platelet count: 377,000/mm³

- Reticulocyte count: 247,260/mm³

- Total bilirubin: 34 mg/L (predominantly indirect: 28.4 mg/L)

- Liver function tests: within normal limits

- Direct Coombs test: negative

- Haemoglobin electrophoresis: normal

- Enzyme assay: confirmed erythrocyte pyruvate kinase deficiency, with markedly reduced enzymatic activity and elevated G6P2/PK ratio
- Genetic testing was not performed.

Abdominal ultrasound showed biliary lithiasis without complications, and moderate, homogeneous splenomegaly.

IV. Discussion

PKD is a rare autosomal recessive disorder of the glycolytic pathway, first described in the early 1960s [5–8]. It leads to congenital, chronic haemolytic anaemia due to impaired energy production in erythrocytes.

The diagnosis should be suspected in patients with chronic haemolysis presenting with jaundice, splenomegaly, indirect hyperbilirubinaemia, and elevated reticulocyte count. Diagnosis is confirmed by enzyme activity testing and, when available, molecular analysis of PKLR gene mutations [6,9].

Management is challenging and often includes supportive measures such as blood transfusions, splenectomy, and, in specialised centres, disease-modifying therapies [10].

V. Conclusion

Pyruvate kinase deficiency is a rare but significant cause of congenital haemolytic anaemia. Due to its chronic course and potential complications, long-term multidisciplinary follow-up is essential to improve patient outcomes.

REFERENCES

- 1. Rachael F, Wilma B. Management of pyruvate kinase deficiency in children and adults. 2020.
- 2. Beutler E, Gelbart T. Estimation of the prevalence of pyruvate kinase deficiency. Blood. 2000;95(11):3585–3588.
- 3. Christensen RD, et al. PKD and neonatal hyperbilirubinemia. J Perinatol. 2010;30(3):233-236.
- 4. Mulr WA, Beutler E, et al. PKD in the Ohio Amish. Am J Hum Genet. 1984;36(3):634-639.
- 5. Selwyn JG, Dacie JV. Autohaemolysis in congenital haemolytic anaemia. Blood. 1954;9(5):414-438.
- 6. De Gruchy GC, et al. Congenital non-spherocytic haemolytic anaemia. Blood. 1960;16:1371–1397.
- 7. Valentine WN, Tanaka KR, Miwa S. PK defect in congenital anaemia. Trans Assoc Am Physicians. 1961;74:100-110.
- 8. Tanaka KR, Valentine WN, Miwa S. Hereditary PK deficiency. Blood. 1962;19:267-295.
- 9. Blanchi P, et al. Consensus recommendations on PKD diagnosis. Am J Hematol. 2018.
- 10. Grace RF, et al. Management of patients with PKD. Br J Haematol. 2019;184(5):721–734.

How to cite this article:

Meimine Aa et al. Ijsrm.Human, 2025; Vol. 28 (10): 1-2

Conflict of Interest Statement: All authors have nothing else to disclose.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.