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ABSTRACT  

The application of enhanced oil recovery methods on oil 

fields increases recovery efficiency. Technological advances 

have made possible economical the additional recovery of 

identified reserves. For this reason, the planning should be 

considered as early as possible in the life of a reservoir. Since 

oil prices and demand for oil are growing up rapidly and on 

the other side declining oilfield productivity is taking place all 

experts highlight the need for improved and accelerated 

recovery. The Enhanced Oil Recovery technics are very 

complex but give best result if only we now from the 

beginning of the life of reservoirs the hierarchy of selecting 

the best set of these technics, some of them can be repeated 

more than one time. Besides the hierarchy, we must know the 

time period or interval these Enhanced Oil Recovered (EOR) 

technics must be applied and the duration of each of them. 

After the problem is conceptualized, we need to do the 

computer simulations to perform the right hierarchy selection 

procedure. It can happen that we have not chosen the right 

selection form the beginning or in some time of production 

may occur an unexpected problem. In these conditions we 

must be able to reallocate the problem again, in the actual 

conditions and run the simulations in computer again and 

again. There exists no mathematical algorithm to perform all 

these activities in space and time, so we have to choose the 

right one for our oil field that must be different for another oil 

field. So, it is a state of art to choose the proper hierarchy for 

a certain oil field. 
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INTRODUCTION 

Until now, it is impossible to find a determined strategy or even a stochastic one that can 

maximize the profit or better to say the Net Present Value (NPV) over a full-time life of a 

reservoir while taking in consideration the Enhanced Oil Recovered (EOR) techniques. The main 

reason of this difficult task is the large amount of parameters of reservoir that most of them 

change continuously just under a single determined EOR, for example when we inject solvent or 

CO2. Meanwhile, we don’t know the time how long we will inject CO2 and how the different 

parameters of reservoirs like permeability, porosity etc. will change with time. From the other 

side we don’t know of which strategy to begin because are some of them to take in 

consideration; steam injection, CO2 injection, polymer, surfactant, water injection, bacteria 

injection, solvents, etc. Another source of uncertainty that make more complicated the problem is 

the series of wells, the number of them, the positions of them etc. And lastly the NPV is under 

the terms of a stochastic parameter that is the discount factor. So, it is practically impossible to 

find a time series for the switching regimes to maximize the expected Net Present Value. There 

are several articles that address this problem, but to my knowledge, there is not a solution yet. 

We will try to give aspects, without pretending to find the optimal strategy definitely.  

METHODOLOGY  

This methodology is taken and reproduced in part from the first and second authors in references. 

Following Creemers S [1] a project can be seen as a graph G= (V, E), where V = {1, …, n}is e 

set of nodes that represent project activities that in our examples are some of EOR processes, so 

we have n processes to be developed and  is a set of arcs that represent 

precedence relationships that in our case we suppose the process of injecting CO2 has similarity 

with that of solvent injection. To start and the competition of a project are represented by dummy 

activities 1 and n, respectively. Each non-dummy activity  has a random duration 

 with expectation  and variance . In addition,  denotes the vector of 

random variables  and  is the vector of random variates (or realizations) 

of   where  is a random variate of . Because activities durations are uncertain because they 

depend of many geological, economical changes, activity starting times cannot be determined at 

the start of the project. Instead, they are determined during project execution using a policy. 



www.ijsrm.humanjournals.com 

Citation: Dulian Zeqiraj. Ijsrm.Human, 2020; Vol. 16 (4): 260-268. 

262 

Most of the literature on stochastic project scheduling adopts simple list policies that execute 

activities in the order of a list (see, e.g., Golenko-Ginzburg & Gonik, 1997; Tsai & Gemmill, 

1998; Ballestn & Leus, 2009; Ashtiani et al., 2011; Rostami et al., 2017). In this article, on the 

other hand, we adopt elementary policies; a more general class of policies that allows decisions 

to be made at the start of the project and at the end of activities. so, we have a beginning time t=0 

end an approximately expected end time t = T of the project for exploiting the oil field.  A policy 

can be seen as a set of decision rules that define actions at decision times. Decision times are 

typically the start of the project and the completion times of activities. An action, on the other 

hand, corresponds to the abandonment of the project or the start/interruption of a set of activities. 

In addition, decisions have to respect the non-anticaptivity constraint (i.e., a decision at time t 

can only use information that has become available before/at time t and this is very important 

because we consider these like a Markov Chain). In other words, we are not interested how was 

the permeability or porosity  time ago but their values at time of the step  . When 

executing a policy, activity starting times become known gradually (i.e., a schedule is 

constructed as time progresses). As a result, a policy  may be interpreted as a function that 

maps realizations of activity durations p to vectors of feasible starting times. 

 

Without loss of generality, we assume that a cash flow  is incurred at the start of activity i, 

where represents the initial outlay, and  represents the project payoff_. We use continuous 

discounting to determine the eNPV of a cash ow  

                                                                                      (1)     

Where r is the discount rate, and E ( )is the expectation operator with respect to p. The eNPV of 

the project is: 
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The optimal policy selects activities such that v is maximized. The state of the system is 

represented by the set of finished activities (F). Upon entry of state (F):F V, policy 

determines the set of ongoing activities The optimal policy selects 

 from H(F) such that G  is, maximized, where G( is the value function that 

returns the eNPV of the project upon entry of state (F) if polisy  is adopted. Given a set of 

ongoing activities , the time until the first completion of activity i: i  is exponentially 

distributed with expected value  . The probability that activity i: i  finished first 

equals  . Therefore, if polisy  is adopted, the eNPV of the project upon entry of 

state (F) equals: 

 

Where  is the cash flow that incurred when starting activities for the 

first time upon entry of state . The optimal subset of ongoing activities is given by: 

 

Finding the optimal set of ongoing activities requires us to enumerate all subsets of H(F). Note, 

however, that several heuristics may be devised in order to determine a \good" set of ongoing 

activities. Mathematically speaking, consider a production facility which can run the production 

in d,d the set of available modes by  

and let  Let  be a vector-valued Markovian 

stochastic process representing random factors that influence the profitability of the production, 

e.g., the market price of the underlying commodities, weather, and market demand of the 

produced goods. The process X may be a Brownian motion or some other more general 

stochastic process, possibly with jumps. Let the running payoff in production mode i, at time t, 

be 
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 and let  denote the cost of switching from mode I to mode j at time t. A 

management strategy is a combination of a non-decreasing sequence of stopping times  

where, at time , the manager decides to switch the production from its current mode to another, 

and a sequence of indicators , taking values in D, indicating the mode to which the 

production is switched. For a strategy starting in mode i at time t, we have  

 and  At  the production is switched from mode  to . A strategy 

 can be represented by the function  defined as 

 

and which indicates the current mode of the facility. Here,   is the indicator function of the 

measurable set B, i.e.,  = 1 if s  B and 0 otherwise. We will from here on in alternate 

between the two notations for a strategy (and use them in combination) without further notice. 

When the production is run using a strategy μ, defined by  over a finite 

horizon [0, T], the total expected profit is  

. 

Similarly, given that the stochastic process X starts from x at time t, the profit made using 

strategy, over time horizon (t,T), is 

 

The optimal switching problem now consists in finding the value function 

 

And an optimal management strategy , defined by  

such that  
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for any other strategy μ. 

Clearly, the value and optimal strategy of an optimal switching problem depends on the set of 

available modes D, the (finite) time horizon T, the running payoff functions , the 

switching costs , and the dynamics of the underlying process X. We will suppress the 

dependence on D and T and refer to an optimal switching problem with the above parameters 

simply as . 

There are today basically three different approaches available to tackle the optimal switching 

problem. Two of them are based on stochastic techniques, in particular Snell envelopes and 

backward stochastic differential equations, and one is of deterministic type, making use of 

variational inequalities/obstacle problems. In practice, the two approaches are often used in 

combination. The purpose of this section is to give a brief introduction of these solution 

techniques and indicate how they are interconnected. For future reference, this section also 

includes a very brief introduction to stochastic filtering.  

Now let take some examples and find the right strategy in the complex EOR processes. In our 

case we take only 2 agents, polymer and water and see if both NPV and eNPV arrive their 

maximum at the same time for the strategy with polymer and water. 

Objective functions: MAXIMIZING NPV AND eNPV 

Create objective functions for the different systems. We set up approximate prices in USD for 

both the oil and the injection cost of the different phases. The polymer injection cost is per kg 

injected. 

prices = {'OilPrice',            100 , ... 

                'WaterProductionCost',   1  , ... 

                'WaterInjectionCost',    0.1, ... 

                'DiscountFactor',        0.1 }; 
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Figure No. 1: Graphical representation of oil with polymer and water of displacement front at 

time t=t1 

From above it is a combined strategy, first water and second polymer. It results to be an optimal 

strategy because Both NPV and eNPV result at their maximum. 

 

Figure No. 2: Graphical representation of oil with polymer and water of displacement front at 

time t=t2 

From above it is a combined strategy, first water and second polymer. It results to be an optimal 

strategy because both NPV and eNPV result at their maximum. 
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Figure No. 3: Production of oil in standard barrel per day with separated and combined strategy, 

both with the goal to maximize NPV and eNPV 

CONCLUSION 

Selecting the optimal strategy for oil well agent injection for enhanced oil recovery is not easy. 

Several books, articles exist in literature for different scenarios. We have made use of two books, 

reference 1 and 2 for finding an optimal strategy for both the simple but stochastic NPV (because 

of price of oil) and the expected eNPV for the hierarchy of injection of 2 agents, water and 

polymer. In our case, the best strategy is the combined one. Half of time to inject water and half 

of time to inject polymer. This strategy ensures too (see fig 3) that the production of oil is in time 

increasing. From the two lines below we see that oil with the polymer gives more satisfactory 

result. But this conclusion does mean that this is a universal, unified methodology. It is valid for 

our reservoir conditions. A lot of work has to be done to develop other strategies with more than 

two component and specially strategies when the processes can be repeatable in time. 
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