

Human Journals **Research Article** August 2018 Vol.:10, Issue:2 © All rights are reserved by Silvia Antonia Brandán

Understanding the Potency of Heroin against Morphine and Cocaine

Silvia Antonia Brandán^{*}

Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Tucumán, Argentina.

Submission:	22 July 2018
Accepted:	29 July 2018
Published:	30 August 2018

www.ijsrm.humanjournals.com

Keywords: Heroin, vibrational spectra, molecular structure, descriptor properties, DFT calculations.

ABSTRACT

Here, the structural, topological and vibrational properties of the free base, cationic and hydrochloride heroin species were theoretically determined in gas phase and in aqueous solution employing the hybrid B3LYP/6-31G* method. The results were compared with those reported for morphine and cocaine. The self-consistent reaction field (SCRF) and polarised continuum (PCM) methods were employed to study the solvent effects while the solvation energies were predicted with the solvation model. The N-CH₃ groups in the three species in both media were optimized in equatorial positions which apparently favour the volume expansions in solution, in particular, for cationic and hydrochloride species. The three heroin species presents the higher solvation energy values, as compared with the corresponding to morphine and cocaine. The charges studies and the molecular electrostatic potentials (MEP) mapped surfaces suggest clear electrophilic sites on the N-H group of the cationic species while the hydrochloride species shows nucleophilic regions around the Cl atoms but less weak sites on the C=O groups. The low bond order values for the Cl atoms in the hydrochloride species in both media reveal the ionic characteristics of their halogen H---Cl bonds. The NBO and AIM studies support the high stabilities of those three heroin species against to the corresponding to morphine and cocaine while the presence of other groups linked to tropane ring increase significantly the reactivity of alkaloid, specifically of its cationic and hydrochloride forms. The predicted higher global electrophilicity index (ω) for hydrochloride form of cocaine and the low global nucleophilicity index (E) values in heroin and morphine could probably explain the different behaviors of these species in both media. In this work, the known potential pharmacological properties for the three heroin species were explained easily with the rule of five states suggested by Lipinski's and Veber. The harmonic force fields and the complete vibrational assignments of the 144, 147 and 150 normal vibration modes expected respectively for the free base, cationic and hydrochloride heroin species were here reported for first time by using the SQMFF methodology and the available infrared and Raman spectra for the free base and hydrochloride forms.

INTRODUCTION

The tropane, cocaine, morphine and heroin alkaloids are known drugs with multiple biological properties for which are used in medicine for the treatment of severe pain [1-8] but its effects with the continual use, obviously change, generating addiction and dependence [1]. Consequently, when these drugs are used for non-medicinal purposes are named drugs of abuse and they are categorized as legal or illegal within the forensic science [5-9]. From this point of view, the detection of these alkaloids and its derivatives are generally performed by using a simple, quick and direct techniques such as the vibrational spectroscopy due to that in these cases the evidence clearly should be conserved [3,5,6,8,10-13]. Thus, both infrared and Raman spectra are tools highly suitable from long time to identify species in different aggregation states and where the Raman spectroscopy shows wide advantages against to the infrared in the case of a solid substance where is not necessary a previous sample preparation [3,5,6,8,10-13]. Besides, the identification of illicit drugs can be also studied with the Surface Enhanced Raman Spectroscopy (SERS) technique [14]. Obviously, the use of these spectroscopies are related to the structural studies because to perform the spectral analysis it is necessary to know the experimental structure and/or when it is unknown, the theoretical calculations are indispensable to predict the most stable structure [3,10-13]. Currently, the scaled quantum mechanical force field (SQMFF) methodology is a useful procedure enough used to perform the complete assignments of compounds combining the normal internal coordinates with the vibrational spectra and the corresponding harmonic force fields [15] and, for these reasons, that procedure is very reliable. With this methodology were recently obtained the scaled harmonic force fields for the base free, cationic and hydrochloride species of tropane, cocaine and morphine alkaloids by using transferable scaling factors and the Molvib program [16,17]. This way, the complete vibrational assignments for the three different forms of those three species were published and, now, these substances can be totally identified by using the vibrational spectroscopy [10-13]. In those works, the definitions of all normal internal coordinates of three species with fused cyclical structures constituted by different rings members and with a tertiary nitrogen atom were completely elucidated. But, so far, for the heroin alkaloid only the vibration normal modes for the base free were identified by using scaled frequencies with a scale factor of 0.96 above 800 cm⁻¹ and by 1.0013 below 800 cm⁻¹ while the other two cationic and hydrochloride species remain even without to assign [3]. Clearly, in that work the SQM methodology was not used and, for these reasons, the aims of this work are: (i) to known the most stable structures of base free,

cationic and hydrochloride species of heroin, (ii) to calculate some structural properties and, besides, (iii) to perform their complete vibrational assignments by combination of SQMFF approach with the corresponding normal internal coordinates and the experimental available infrared and Raman spectra for the base free and hydrochloride forms [18]. Structurally, heroin is an opiate derivative from morphine, therefore, heroin is known as diamorphine where two OH groups in the morphine structure were replaced by two acetyl groups forming heroin and, being it the most potent of the opiates [1]. The structures of heroin hydrochloride and its polymorph were already published by Canfield et al. [19] and Deschamps et al. [20], respectively. Then, to achieve those purposes these structures were used to perform the theoretical calculations based on the density functional theory (DFT) with the hybrid B3LYP/6-31G* method [21,22] and, after their optimizations, the structural properties and frequencies were calculated. Later, the complete vibrational assignments of the bands observed in the experimental available for the base free and the hydrochloride species were performed by using the normal internal coordinates, the corresponding scaled force fields computed with the SQMFF procedure and the Molvib program [15-17]. Finally, additional calculations on the frontier orbitals and some global descriptors were also computed [23-32] in order to know their reactivities and, also to understand the behaviours of those three species of heroin taking into account that the disease heroin crystal nephropathy is originated by heavy heroin abuse [33]. Here, the predicted properties including the solvation energies for the three species of heroin were compared with those reported for cocaine and morphine alkaloids [10-13].

Methodology calculations

The three species of heroin were modelled with the *GaussView* program [34] in accordance to the experimental structure reported for the hydrochloride form [19] and, later these species were optimized in gas phase with the Gaussian program Revision A.02 [35] by using the hybrid B3LYP/6-31G* method [21,22]. **Figure 1** shows the three structures of heroin together with the atoms labelling while **Figure 2** are presented the identifications of the five rings for each structure. On the other hand, the three species in solution were optimized at the same level of theory but with the self-consistent reaction field (SCRF) method and the integral equation formalism variant polarised continuum (IEFPCM) model [36,37] while the solvation model [38] was employed to calculate the solvation energies of the three species.

Figure 1. Theoretical molecular structures of the free base, cationic and hydrochloride species of heroin and the atoms numbering.

The Moldraw program [39] was used to calculate all volumes in both media while their corresponding variations were obtained as the differences between the values in solution and in gas phase at the same level of theory. The zero point vibrational energy (ZPVE) due to the electronic energy was employed to correct all energy values because the effects of molecular vibrations persist even at 0 K. Here, it is necessary to clarify that for the other alkaloids were also corrected the energy values. Then, with the optimized structures, the natural populations atomic (NPA) and the Merz-Kollman (MK) charges together with the molecular electrostatic potentials were calculated at the same level of theory [40,41] while the bond orders and the presence of donor-acceptor interactions were evaluated with the NBO program [40].

Figure 2. Theoretical simplified structures of the free base, cationic and hydrochloride species of heroin together with the identifications of their rings.

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2018; Vol. 10 (2): 97-140.

100

The AIM2000 program and the Bader's theory of atoms in molecules (AIM) were used to compute the topological properties of the three heroin species [42,43]. Here, the harmonic force fields by using the B3LYP/6-31G* level of theory were obtained for those three species by using the SQMFF methodology [15,16] with the Molvib program [17] while their normal internal coordinates were similar to those reported for the morphine species [11]. In addition, the assignments of all bands observed in the IR and Raman spectra for the free base and the hydrochloride species were performed by using potential energy distribution (PED) contributions \geq 10%. The use of the frontier orbitals are of interest to explain the reactivities of heroin species [23,24] while their behaviours can be explained through global descriptors [11-13,25-32], such as the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and nucleophilicity indexes (E) descriptors [25-32]. The three heroin species were also estimated with some Lipinski's and Veber's criteria [44,45] in order to evaluate their pharmacological properties.

RESULTS AND DISCUSSION

Structural studies in gas phase and in solution

The results related to total energies, dipole moments, volume variations and solvation energies for the free base, cationic and hydrochloride species of heroin can easily be seen in **Table 1** compared with the values corresponding to the species of morphine and cocaine in both media [11,13]. The energy values for the three alkaloids and their species were corrected by ZPVE, as was explained in the above section. Note that the higher dipole moment values are observed for the cationic species, specifically in solution, as expected because these species are charged and, in solution, are highly hydrated with solvent molecules. The higher value is observed for the cationic species of heroin. On the other hand, the free base of heroin shows volume contraction while their cationic and hydrochloride species show volume expansions, as the hydrochloric species of morphine and the cationic species of cocaine. Here, the free base of cocaine presents similar volume expansion than its cationic form.

Figure 3 are presented the solvation energy and the dipole moment values for the different species of the three alkaloids in aqueous solution. Heroin presents the higher solvation energy values for the three species while the free base of heroin has higher solvation energy than cocaine and morphine but the hydrochloride cocaine species has lower value than the corresponding to heroin and morphine.

Table 1. Calculated total energies (*E*), dipole moments (μ), volume variations (Δ V) and solvation energies (Δ G) for the free base, cationic and hydrochloride heroin forms compared with those reported for the morphine and cocaine species in gas and aqueous solution phases.

B3LYP/6-31G*										
	HEROIN ^a									
Gas phase corrected by ZPVE										
Species	E (Hartrees)	μ (D)	V (Å ³)							
Free base	-1244.5307	3.02	374.6							
Cation	-1244.9005	15.13	378.5							
H-Cl	-1705.3389	9.76	404.7							
PCM corrected by ZPVE										
	E (Hartrees)	μ (D)	V (Å ³)	$\Delta V (\text{\AA}^3)$						
Free base	-1244.5534	4.65	374.1	-0.5						
Cation	-1245.0073	21.50	380.1	1.6						
H-Cl	-1705.3841	15.11	406.3	1.6						
	Solvat	ion energy (k	J/mol)							
	$\Delta { m G_u}^{\#}$	ΔG_{ne}	ΔG_c							
Free base	-59.54	29.13	-88.67							
Cation	-280.13	43.01	-323.14							
H-Cl	-118.56	43.38	-161.94							
		MORPHINE	b							
	Gas pha	se corrected l	by ZPVE							
Species	E (Hartrees)	μ (D)	V (Å ³)							
Free base	-939.6185	2.77	292.7							
Cation	-939.9999	11.71	295.8							
H-Cl	-1400.4406	7.82	318.3							
	PCM	corrected by	ZPVE							
	E (Hartrees)	μ (D)	V (Å ³)	$\Delta V (\text{\AA}^3)$						
Free base	-939.6367	4.86	293.0	0.3						
Cation	-940.1075	18.34	295.0	-0.8						
H-Cl	-1400.4859	11.63	319.0	0.7						
	Solvat	ion energy (k	J/mol)							
	$\Delta {G_u}^{\#}$	ΔG_{ne}	ΔG_c							
Free base	-47.74	13.17	-60.91							
Cation	-282.23	26.96	-309.19							
H-Cl	-118.82	25.92	-144.74							

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2018; Vol. 10 (2): 97-140.

102

• •			•	1
	ICTM	human	mirng	le com
VV VV VV .1	51 11.	uuuau	ivuina	15.COIII

	COCAINE ^c											
Gas phase corrected by ZPVE												
Species	E (Hartrees)	μ (D)	V (Å ³)									
Free base	-1015.7564	1.55	321.0									
Cation	-1016.1483	9.57	322.5									
H-Cl	-1476.5594	7.45	353.2									
	PCM	corrected by	ZPVE									
	E (Hartrees) μ (D) V (Å ³) Δ V (Å ³)											
Free base	-1015.7727	1.86	322.2	1.2								
Cation	-1016.2309	13.22	323.7	1.2								
H-Cl	-1476.5975	12.58	352.5	-0.7								
	Solvat	ion energy (l	kJ/mol)									
	$\Delta {G_u}^{\#}$	ΔG_{ne}	ΔG_c									
Free base	-42.75	28.51	-71.26									
Cation	-216.66	38.58	-255.24									
H-Cl	-99.94	38.20	-138.14									

 $\Delta G_u^{\#}$, See text; ^aThis work; ^bFrom Ref [11]; ^cFrom Ref [13]

On the other side, from Fig. 3 it is observed that the graphic of dipole moment values shows clearly the higher values for the three species of heroin where the higher value observed for the cationic form justify evidently its higher solvation energy.

Figure 3. Solvation energies (upper) and dipole moment values (bottom) for the three forms of heroin compared with the corresponding to morphine and cocaine.

Here, the closers values of dipole moments observed for the hydrochloride species of morphine and cocaine probably support the similar solvation energy values observed in these two species. On the contrary, the proximities between the dipole moment values observed for the free base of heroin and morphine cannot be justified by the differences in their solvation energy values but, probably, the contraction and expansion volume observed for the free base of heroin and morphine, respectively could justify the differences in their corresponding solvation energy values.

All optimized geometrical parameters for the three heroin species in the two media by using the hybrid B3LYP/6-31G* method can be observed in Table 2. Calculated bond lengths are compared with those experimental ones determined by Canfield et al. [19] and Deschamps et al. [20] for diacetylmorphine and its polymorph form by using the root-mean-square deviation (RMSD). On the other side, bond angles were compared with those experimental values reported by Deschamps et al. [20] and with those theoretical calculated for the free base of heroin by Pandey et al [3] at the B3LYP/6-311G** level of theory while, the predicted dihedral angles were only compared with those two experimental values determined by Deschamps et al. [20] for the polymorphic form of heroin. Here, the better correlations in bond lengths were predicted for the three heroin species from the experimental data obtained by Deschamps et al. [20], with RMSD values between 0.029 and 0.020 Å while when the calculated values are compared with the experimental ones obtained by Canfield et al. [19] the RMSD values increase between 0.047 and 0.035 Å. In relation to the bond angles and for the two comparisons considered, the RMSD values show reasonable and practically similar concordances with values between 2.0 and 1.6°. These results evidence, in particular for the free base, that with a basis set of lower size (6-31G*) similar bond angles values to those predicted by using 6-311G** basis set are obtained. Hence, these structures can be used to perform the corresponding vibrational analyses of the three species. Note that the dihedral angles show high RMSD values due to the great difference between the experimental and predicted dihedral C10-C16-O2-C24 angles. Besides, the hydrochloride species shows a strong change sign in the dihedral C22-O3-C26-C27 angle when the medium change of gas phase to aqueous solution.

Table 2. Comparison of calculated geometrical parameters for the free base, cationic
and hydrochloride heroin species in gas and aqueous solution phases compared with the
corresponding experimental ones for hydrochloride morphine.

Parameters	Free	base	Cati	onic	Hydroc	chloride	Exp ^b	Exp ^c
	Gas	PCM	Gas	PCM	Gas	РСМ		
			Bon	d lengths	(Å)			
N6-CH ₃	1.453	1.460	1.501	1.498	1.483	1.492		1.46
N6-C9	1.473	1.482	1.549	1.534	1.514	1.525		1.44
N6-C14	1.463	1.468	1.520	1.511	1.498	1.506		1.45
C8-C9	1.555	1.553	1.552	1.550	1.554	1.552		1.53
C9-C13	1.565	1.563	1.545	1.547	1.549	1.547		1.62
C7-C8	1.545	1.548	1.547	1.548	1.544	1.548		1.52
C7-C10	1.558	1.556	1.561	1.556	1.557	1.556		1.55
C7-C11	1.546	1.545	1.548	1.546	1.546	1.545		1.52
C7-C12	1.509	1.509	1.509	1.508	1.509	1.509		1.57
C12=C15	1.382	1.384	1.383	1.383	1.382	1.383		1.36
C8-C17	1.506	1.508	1.510	1.508	1.506	1.508		1.42
C10-C16	1.556	1.550	1.554	1.550	1.558	1.550	1.536(8)	1.55
C16-C19	1.510	1.509	1.511	1.509	1.510	1.509	1.480(8)	1.50
C12=C18	1.385	1.385	1.385	1.385	1.385	1.384		1.38
C17=C19	1.334	1.336	1.334	1.335	1.334	1.335		1.29
C16-O2	1.438	1.449	1.427	1.447	1.438	1.448	1.447(6)	1.45
C18-O1	1.364	1.372	1.362	1.371	1.363	1.371		1.37
C10-O1	1.461	1.472	1.455	1.470	1.463	1.470		1.48
C24-O2	1.354	1.350	1.368	1.351	1.357	1.351	1.338(8)	1.38
C24-O4	1.212	1.220	1.209	1.219	1.211	1.219	1.192(8)	1.23
C22-O3	1.395	1.403	1.382	1.401	1.392	1.402	1.403(7)	1.40
C26-O3	1.374	1.371	1.389	1.373	1.377	1.372	1.349(8)	1.31
C26-O5	1.204	1.214	1.202	1.213	1.204	1.214	1.180(9)	1.20
C24-C25	1.510	1.503	1.505	1.502	1.509	1.502	1.496(10)	1.45
RMSD ^b	0.020	0.020	0.025	0.020	0.021	0.029		
RMSD ^c	0.035	0.035	0.047	0.043	0.040	0.041		
			Boi	nd angles	; (°)			
Parameters	Gas	PCM	Gas	PCM	Gas	PCM	Exp ^b	Calc ^d
C9-N6-C20	114.2	112.9	114.3	114.1	114.5	113.9		114
C14-N6-C20	112.3	110.4	112.0	111.8	111.8	111.3		
C9-N6-C14	113.6	112.4	112.4	112.7	114.0	113.1		

N6-C9-C8	107.1	107.3	106.2	106.4	107.0	106.7		106
N6-C14-C11	111.1	111.6	110.5	110.9	110.9	111.2		111
C19-C16-C10	115.0	115.0	114.9	115.0	115.3	115.0	113.3(4)	115
C19-C16-O2	111.2	110.9	112.1	111.0	111.2	111.1	108.7(5)	107
C10-C16-O2	107.0	107.2	106.9	107.2	107.0	107.1	112.5(4)	111
C16-O2-C24	117.4	117.9	116.2	117.7	117.2	117.7	116.8(5)	
O2-C24-O4	124.0	123.5	122.6	123.4	123.7	123.3	123.6(6)	124
O2-C24-C25	109.9	111.1	110.2	111.0	110.1	111.0	112.2(6)	111
O4-C24-C25	125.9	125.3	127.0	125.4	126.0	125.5	124.1(6)	126
C18-C22-C23	117.8	118.1	117.5	118.0	117.8	118.1	117.4(6)	117
C18-C22-O3	121.8	122.4	122.4	122.5	121.8	122.3	123.4(6)	
C23-C22-O3	120.2	119.4	119.9	119.3	120.2	119.4	119.0(5)	122
C22-O3-C26	118.0	118.1	117.6	118.3	117.9	118.1	117.0(5)	
O3-C26-O5	124.0	122.9	122.8	122.8	123.7	122.8	121.6(6)	123
O3-C26-C27	109.5	110.6	109.6	110.5	109.6	110.5	112.4(7)	109
O5-C26-C27	126.3	126.4	127.4	126.5	126.6	126.5	125.9(7)	126
RMSD ^b	1.7	1.6	1.8	1.6	1.7	1.7		
RMSD ^b RMSD ^c	1.7 1.7	1.6 1.8	1.8 2.0	1.6 1.7	1.7 1.7	1.7 1.8		
RMSD ^b RMSD ^c	1.7 1.7	1.6 1.8	1.8 2.0 Dihe	1.6 1.7 dral angle	1.7 1.7 es (°)	1.7 1.8		
RMSD ^b RMSD ^c C8-C9-N6-CH ₃	1.7 1.7 165.6	1.6 1.8 170.2	1.8 2.0 Dihe 168.5	1.6 1.7 dral angle 168.7	1.7 1.7 es (°) 168.9	1.7 1.8 170.0		
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃	1.7 1.7 165.6 -172.8	1.6 1.8 170.2 -176.8	1.8 2.0 Dihe 168.5 -174.4	1.6 1.7 dral angle 168.7 -175.5	1.7 1.7 es (°) 168.9 -175.2	1.7 1.8 170.0 -176.7		
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7	1.7 1.7 165.6 -172.8 65.6	1.6 1.8 170.2 -176.8 65.9	1.8 2.0 Dihe 168.5 -174.4 65.3	1.6 1.7 dral angle 168.7 -175.5 65.6	1.7 1.7 es (°) 168.9 -175.2 64.9	1.7 1.8 170.0 -176.7 65.4		
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7	1.7 1.7 165.6 -172.8 65.6 -50.0	1.6 1.8 170.2 -176.8 65.9 -50.7	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4	1.7 1.8 170.0 -176.7 65.4 -49.9		
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9		
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24 C10-C16-O2-C24	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8 -153.6	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9 -150.6	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9 -156.1	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1 -151.4	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3 -152.7	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9 -150.5	-83.5(6)	
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24 C10-C16-O2-C24 C16-O2-C24-O4	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8 -153.6 1.5	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9 -150.6 -0.3	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9 -156.1 0.7	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1 -151.4 -0.2	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3 -152.7 -0.1	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9 -150.5 -0.9	-83.5(6)	
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24 C10-C16-O2-C24 C16-O2-C24-O4 C16-O2-C24-C25	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8 -153.6 1.5 -179.1	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9 -150.6 -0.3 178.3	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9 -156.1 0.7 -179.5	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1 -151.4 -0.2 178.5	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3 -152.7 -0.1 179.0	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9 -150.5 -0.9 177.8	-83.5(6)	
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24 C10-C16-O2-C24 C16-O2-C24-O4 C16-O2-C24-C25 C18-C22-O3-C26	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8 -153.6 1.5 -179.1 -72.0	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9 -150.6 -0.3 178.3 -69.0	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9 -156.1 0.7 -179.5 -68.3	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1 -151.4 -0.2 178.5 -66.6	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3 -152.7 -0.1 179.0 -73.4	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9 -150.5 -0.9 177.8 -68.4	-83.5(6) -94.2(8)	
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24 C10-C16-O2-C24 C16-O2-C24-O4 C16-O2-C24-C25 C18-C22-O3-C26 C22-O3-C26-O5	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8 -153.6 1.5 -179.1 -72.0 -5.8	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9 -150.6 -0.3 178.3 -69.0 0.1	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9 -156.1 0.7 -179.5 -68.3 -3.7	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1 -151.4 -0.2 178.5 -66.6 179.4	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3 -152.7 -0.1 179.0 -73.4 -5.9	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9 -150.5 -0.9 177.8 -68.4 -0.3	-83.5(6) -94.2(8)	
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24 C10-C16-O2-C24 C16-O2-C24-O4 C16-O2-C24-C25 C18-C22-O3-C26 C22-O3-C26-O5 C22-O3-C26-C27	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8 -153.6 1.5 -179.1 -72.0 -5.8 173.9	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9 -150.6 -0.3 178.3 -69.0 0.1 -179.3	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9 -156.1 0.7 -179.5 -68.3 -3.7 176.5	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1 -151.4 -0.2 178.5 -66.6 179.4 179.4	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3 -152.7 -0.1 179.0 -73.4 -5.9 174.0	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9 -150.5 -0.9 177.8 -68.4 -0.3 -179.9	-83.5(6) -94.2(8)	
RMSD ^b RMSD ^c C8-C9-N6-CH ₃ C11-C14-N6-CH ₃ N6-C9-C8-C7 N6-C14-C11-C7 C19-C16-O2-C24 C10-C16-O2-C24 C16-O2-C24-O4 C16-O2-C24-C25 C18-C22-O3-C26 C22-O3-C26-C27 O2-C16-C10-O1	1.7 1.7 165.6 -172.8 65.6 -50.0 79.8 -153.6 1.5 -179.1 -72.0 -5.8 173.9 -26.2	1.6 1.8 170.2 -176.8 65.9 -50.7 82.9 -150.6 -0.3 178.3 -69.0 0.1 -179.3 -30.7	1.8 2.0 Dihe 168.5 -174.4 65.3 -51.6 76.9 -156.1 0.7 -179.5 -68.3 -3.7 176.5 -29.1	1.6 1.7 dral angle 168.7 -175.5 65.6 -50.3 82.1 -151.4 -0.2 178.5 -66.6 179.4 179.4 -31.2	1.7 1.7 es (°) 168.9 -175.2 64.9 -50.4 80.3 -152.7 -0.1 179.0 -73.4 -5.9 174.0 -22.6	1.7 1.8 170.0 -176.7 65.4 -49.9 82.9 -150.5 -0.9 177.8 -68.4 -0.3 -179.9 -30.6	-83.5(6) -94.2(8)	

^aThis work, ^bRef [20] for free base heroin; ^cRef [19] for free base heroin; ^dRef [3] for free base heroin at the B3LYP/6-311G** level of theory. Bold letters: RMSD values.

Evidently, the Cl atoms have influence on its structure in solution and in the environmental, as expected due to its elevated electronegativity and, as supported by its volume expansion in solution (see Table 1). Figure 1 shows clearly that the cationic and hydrochloride species of heroin the N-CH₃ groups are optimized in equatorial position, in relation to N-H groups.

Evidently, these equatorial forms for these two species favor their volumes expansions in solution.

Charges, molecular electrostatic potential and bond orders (BO) analysis

Here, two atomic charges, molecular electrostatic potentials (MEP) and bond orders (BO) were studied for the three heroin species in order to analyze the differences between heroin and morphine because two acetyl groups are observed in the heroin species while each morphine species has only two OH groups. Hence, different properties are expected for those atoms belonging to R1 and R4 rings containing these groups in the three species. Thus, natural populations atomic (NPA), Merz-Kollman (MK) charges, molecular electrostatic potentials (MEP) and bond orders (BO) were calculated for the three heroin species by using the same level of theory in the two studied media [40,41]. Therefore, in **Table 3** are presented MK and MEP values for the three heroin species while in **Figure 4** can easily be observed the variations in the MK charges for the O, N and C atoms of those three species in both media. These graphics show clearly that the O atoms of those three species present practically the same behaviours in both media and, only slight variations in the MK charges are observed on the O1 and O2 atoms of hydrochloride species. However, the charges on N6 atoms in the free base in both media have negative signs while positive signs are observed on these atoms in the hydrochloride species in the two media. On the contrary, the MK charges on the N6 atoms in the cationic species in both media are practically nulls. In relation to the charges on the C atoms, it is observed that the charges on the C7, C8, C9 and C10 atoms, commons to the R1, R2 and R3 rings, in the free base present different signs in both media while, on C7 and C9 atoms are observed positive signs and, on C8 atoms negative signs. Here, very important results are observed in the charges on the C8 atoms for the cationic and hydrochloride species, respectively because the charges on those atoms increase notably in the hydrochloride species in solution while decrease in the cationic species in this media. On the contrary, the charges on the C9 atoms became negative and null, respectively in the hydrochloride and cationic species in solution, as observed in Fig. 4. Note that practically the same behaviours in the charges values are observed on the remaining C atoms but, in particular for the cationic species in solution, the charges on the C11, C12, C13 and C14 atoms became similar to the free base and hydrochloride species.

Table 3. Atomic MK charges and molecular electrostatic potentials for the most stable free base, cationic and hydrochloride structures of heroin by using the hybrid B3LYP/6-31G* level of theory.

	MK charges						MEP						
Atoms	Free	base	Cati	onic	Hydroc	hloride	Free	e base	Cati	onic	Hydroc	hloride	
	Gas	PCM	Gas	PCM	Gas	PCM	Gas	PCM	Gas	PCM	Gas	PCM	
1 0	-0.366	-0.370	-0.338	-0.363	-0,357	-0,330	-22,287	-22,290	-22,177	-22,179	-22,271	-22,269	
2 0	-0.404	-0.412	-0.413	-0.404	-0,393	-0,382	-22,283	-22,283	-22,191	-22,190	-22,275	-22,273	
3 O	-0.348	-0.374	-0.366	-0.368	-0,368	-0,388	-22,268	-22,268	-22,178	-22,177	-22,255	-22,252	
4 O	-0.528	-0.539	-0.510	-0.520	-0,524	-0,528	-22,340	-22,344	-22,252	-22,259	-22,333	-22,335	
5 O	-0.487	-0.503	-0.476	-0.493	-0,496	-0,499	-22,330	-22,335	-22,243	-22,250	-22,318	-22,320	
6 N	-0.393	-0.373	0.016	-0.002	0,234	0,263	-18,354	-18,354	-18,062	-18,058	-18,248	-18,226	
7 C	0.269	0.266	0.026	0.088	0,120	0,120	-14,715	-14,715	-14,579	-14,578	-14,695	-14,687	
8 C	-0.134	-0.159	0.131	0.051	0,180	0,271	-14,726	-14,726	-14,573	-14,572	-14,705	-14,697	
9 C	0.315	0.250	-0.048	0.008	0,012	-0,027	-14,700	-14,700	-14,519	-14,518	-14,656	-14,646	
10 C	0.059	0.067	0.120	0.134	0,064	0,061	-14,672	-14,672	-14,555	-14,554	-14,657	-14,653	
11 C	-0.332	-0.272	-0.181	-0.190	-0,126	-0,109	-14,735	-14,734	-14,582	-14,580	-14,712	-14,703	
12 C	-0.388	-0.361	-0.304	-0.386	-0,371	-0,326	-14,750	-14,749	-14,629	-14,628	-14,730	-14,724	
13 C	-0.282	-0.301	-0.156	-0.250	-0,281	-0,263	-14,731	-14,731	-14,580	-14,579	-14,696	-14,688	
14 C	0.106	0.060	-0.034	0.004	-0,084	-0,085	-14,713	-14,713	-14,527	-14,524	-14,668	-14,656	
15 C	0.323	0.317	0.218	0.288	0,290	0,266	-14,731	-14,731	-14,610	-14,608	-14,709	-14,703	
16 C	0.436	0.469	0.372	0.406	0,388	0,317	-14,672	-14,672	-14,566	-14,564	-14,661	-14,658	
17 C	-0.136	-0.135	-0.292	-0.262	-0,306	-0,337	-14,741	-14,741	-14,621	-14,619	-14,725	-14,721	
18 C	0.439	0.415	0.384	0.442	0,397	0,309	-14,689	-14,689	-14,577	-14,575	-14,671	-14,666	
19 C	-0.333	-0.336	-0.208	-0.230	-0,209	-0,190	-14,743	-14,742	-14,628	-14,625	-14,729	-14,725	
20 C	-0.276	-0.296	-0.434	-0.443	-0,467	-0,472	-14,717	-14,717	-14,524	-14,522	-14,670	-14,661	
21 C	-0.357	-0.353	-0.330	-0.348	-0,340	-0,333	-14,741	-14,741	-14,630	-14,628	-14,722	-14,717	
22 C	0.042	0.081	0.126	0.099	0,107	0,184	-14,681	-14,680	-14,574	-14,572	-14,664	-14,659	
23 C	-0.129	-0.152	-0.134	-0.122	-0,161	-0,186	-14,736	-14,735	-14,630	-14,628	-14,718	-14,713	
24 C	0.720	0.720	0.722	0.711	0,722	0,727	-14,618	-14,619	-14,532	-14,534	-14,611	-14,610	
25 C	-0.467	-0.434	-0.456	-0.438	-0,465	-0,469	-14,740	-14,739	-14,662	-14,665	-14,734	-14,731	
26 C	0.748	0.774	0.749	0.768	0,770	0,768	-14,608	-14,610	-14,523	-14,526	-14,596	-14,595	
27 C	-0.549	-0.550	-0.553	-0.561	-0,553	-0,549	-14,727	-14,727	-14,652	-14,654	-14,718	-14,716	
28 H	0.068	0.080	0.027	0.040	0,031	0,008	-1,118	-1,118	-0,965	-0,964	-1,099	-1,093	
29 H	0.033	0.059	0.102	0.101	0,084	0,094	-1,119	-1,120	-0,939	-0,938	-1,076	-1,067	
30 H	0.062	0.056	0.075	0.069	0,077	0,081	-1,107	-1,107	-0,993	-0,991	-1,093	-1,089	
31 H	0.088	0.075	0.060	0.056	0,053	0,051	-1,121	-1,121	-0,966	-0,965	-1,102	-1,092	
32 H	0.109	0.094	0.136	0.133	0,092	0,088	-1,118	-1,118	-0,966	-0,964	-1,093	-1,084	
33 H	0.075	0.087	0.123	0.140	0,118	0,117	-1,114	-1,113	-0,968	-0,966	-1,081	-1,073	
34 H	0.096	0.105	0.074	0.093	0,088	0,084	-1,112	-1,111	-0,962	-0,960	-1,078	-1,069	
35 H	0.023	0.034	0.104	0.099	0,062	0,060	-1,130	-1,129	-0,937	-0,934	-1,078	-1,065	
36 H	0.078	0.086	0.105	0.096	0,111	0,115	-1,120	-1,120	-0,933	-0,931	-1,077	-1,065	
37 H	0.005	-0.002	0.025	0.013	0,015	0,041	-1,107	-1,106	-1,001	-0,999	-1,097	-1,093	
38 H	0.116	0.123	0.169	0.168	0,157	0,162	-1,108	-1,107	-0,987	-0,986	-1,092	-1,088	
39 H	0.180	0.181	0.190	0.194	0,157	0,167	-1,110	-1,109	-1,001	-0,998	-1,098	-1,094	
40 H	0.083	0.092	0.207	0.212	0,156	0,163	-1,124	-1,123	-0,924	-0,921	-1,067	-1,057	
41 H	0.117	0.124	0.192	0.195	0,182	0,192	-1,116	-1,115	-0,923	-0,921	-1,068	-1,059	
42 H	0.125	0.132	0.186	0.188	0,186	0,193	-1,118	-1,118	-0,923	-0,921	-1,071	-1,062	

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2018; Vol. 10 (2): 97-140.

108

43 H	0.159	0.161	0.177	0.179	0,167	0,169	-1,109	-1,109	-1,000	-0,999	-1,090	-1,085
44 H	0.157	0.161	0.178	0.180	0,167	0,170	-1,103	-1,102	-1,003	-1,000	-1,087	-1,082
45 H	0.145	0.133	0.146	0.135	0,142	0,140	-1,112	-1,112	-1,031	-1,037	-1,106	-1,103
46 H	0.134	0.125	0.144	0.139	0,135	0,139	-1,101	-1,100	-1,023	-1,025	-1,095	-1,092
47 H	0.129	0.124	0.141	0.141	0,131	0,134	-1,113	-1,111	-1,036	-1,038	-1,107	-1,105
48 H	0.165	0.163	0.174	0.173	0,167	0,167	-1,092	-1,093	-1,017	-1,020	-1,082	-1,081
49 H	0.151	0.151	0.164	0.167	0,155	0,155	-1,103	-1,102	-1,028	-1,030	-1,093	-1,091
50 H	0.156	0.157	0.173	0.172	0,158	0,159	-1,095	-1,092	-1,019	-1,020	-1,085	-1,081
51 H			0.298	0.303	0,056	0,042			-0,808	-0,804	-0,988	-0,981
52 Cl					-0,630	-0,708					-64,506	-64,528

Figure 4. Variations of MK charges on the atoms from 1 to 27 for the three forms of heroin in the gas phase (upper) and in aqueous solution (bottom) compared with the corresponding to morphine and cocaine at B3LYP/6-31G** level of theory. Figure 5. Variations of MK charges on the atoms from 28 to 50 for the three forms of heroin in the gas phase (upper) and in aqueous solution (bottom) compared with the corresponding to morphine and cocaine at B3LYP/6-31G** level of theory.

If now, the MK charges on the H atoms for the three species in both media are analysed from **Figure 5** similar behaviours are observed. However, the clear differences in the MK charges are observed on the H51 atoms of the cationic and hydrochloride species in both media observing the highest and lowest values on the atoms of the cationic and hydrochloride

species, respectively as expected because they are the less and most labile H atoms, especially in solution.

The NPA charges for the three heroin species in both media can be seen in **Table 4** together with the BO values. These NPA charges show practically the same behaviours in the three species in both media, observing only on the C16, C18, C22, C24 and C26 atoms positive signs while on the remaining C atoms and on the O and N atoms are observed negative signs. Obviously, on all H atoms are observed NPA charges with positive signs having the higher values the cationic species than the hydrochloride ones.

When the MEP values on all atoms of the three heroin species are analyzed the tendencies observed in these forms are in agreement with the higher electronegativities values of the involved atoms, hence, Cl > O > N > C > H, where the most negative values are observed on the Cl atoms of hydrochloride species while the less negative values are clearly observed on the H51 atoms of cationic and hydrochloride species in both media. Now, if the MEP mapped surfaces for the three species in gas phase are carefully evaluated by the different colorations from **Figure 6**, it is possible to observe for the free base strong red colours on both C=O groups belong to the acetyl groups and, besides a weak red colour on the N atom while weak blue colours are observed on H atoms that belong to C-H and N-CH₃ groups.

Table 4. NPA charges and Wiberg indexes for the most stable free base, cationic and	
hydrochloride structures of heroin by using the hybrid B3LYP/6-31G* level of theory	y.

			NPA cl	harges		Wiberg indexes						
Atoms	Free	base	Cati	onic	Hydroc	hloride	Free	base	Cati	onic	Hydroc	hloride
	Gas	PCM	Gas	PCM	Gas	PCM	Gas	PCM	Gas	PCM	Gas	PCM
1 0	-0.517	-0.517	-0.503	-0.501	-0.513	-0.511	2.114	2.112	2.131	2.128	2.120	2.120
2 O	-0.545	-0.541	-0.550	-0.543	-0.548	-0.545	2.156	2.162	2.138	2.150	2.151	2.155
3 O	-0.548	-0.548	-0.548	-0.544	-0.549	-0.548	2.153	2.153	2.149	2.155	2.152	2.153
4 O	-0.604	-0.610	-0.590	-0.599	-0.600	-0.602	2.026	2.016	2.043	2.028	2.031	2.024
5 O	-0.575	-0.576	-0.566	-0.574	-0.573	-0.573	2.060	2.053	2.072	2.056	2.064	2.056
6 N	-0.515	-0.510	-0.451	-0.448	-0.497	-0.484	3.119	3.111	3.472	3.472	3.353	3.387
7 C	-0.091	-0.090	-0.093	-0.092	-0.092	-0.091	4.004	4.004	4.005	4.004	4.004	4.004
8 C	-0.285	-0.286	-0.291	-0.292	-0.302	-0.305	3.942	3.942	3.943	3.943	3.920	3.920
9 C	-0.046	-0.049	-0.033	-0.036	-0.043	-0.041	3.927	3.928	3.851	3.853	3.884	3.876
10 C	0.107	0.107	0.108	0.106	0.108	0.108	3.849	3.850	3.849	3.850	3.843	3.845
11 C	-0.451	-0.452	-0.478	-0.476	-0.471	-0.473	3.899	3.898	3.879	3.879	3.877	3.877
12 C	-0.083	-0.082	-0.106	-0.104	-0.088	-0.088	3.987	3.987	3.982	3.982	3.987	3.987
13 C	-0.493	-0.494	-0.496	-0.495	-0.489	-0.492	3.892	3.891	3.875	3.875	3.886	3.884
14 C	-0.260	-0.263	-0.257	-0.258	-0.260	-0.259	3.867	3.868	3.779	3.780	3.816	3.810
15 C	-0.022	-0.021	-0.052	-0.049	-0.035	-0.036	3.994	3.994	3.992	3.993	3.994	3.994

16 C	0.033	0.034	0.027	0.027	0.030	0.030	3.845	3.844	3.856	3.854	3.844	3.843
17 C	-0.214	-0.213	-0.250	-0.247	-0.220	-0.221	3.950	3.949	3.937	3.937	3.948	3.946
18 C	0.310	0.311	0.316	0.316	0.314	0.315	3.916	3.917	3.916	3.918	3.917	3.918
19 C	-0.228	-0.227	-0.184	-0.184	-0.220	-0.215	3.949	3.948	3.938	3.938	3.947	3.947
20 C	-0.466	-0.469	-0.475	-0.473	-0.475	-0.473	3.815	3.816	3.714	3.713	3.753	3.743
21 C	-0.241	-0.242	-0.235	-0.235	-0.241	-0.241	3.945	3.945	3.940	3.940	3.944	3.944
22 C	0.246	0.246	0.272	0.270	0.253	0.255	3.902	3.901	3.916	3.915	3.906	3.906
23 C	-0.242	-0.243	-0.224	-0.224	-0.238	-0.238	3.947	3.947	3.941	3.939	3.946	3.945
24 C	0.828	0.825	0.828	0.826	0.828	0.824	3.822	3.824	3.815	3.818	3.821	3.823
25 C	-0.777	-0.775	-0.780	-0.778	-0.778	-0.775	3.822	3.823	3.815	3.816	3.821	3.822
26 C	0.834	0.829	0.835	0.831	0.835	0.829	3.820	3.823	3.812	3.815	3.818	3.821
27 C	-0.776	-0.775	-0.780	-0.778	-0.777	-0.776	3.825	3.824	3.817	3.817	3.823	3.823
28 H	0.270	0.270	0.255	0.256	0.303	0.304	0.931	0.931	0.938	0.938	0.912	0.912
29 H	0.250	0.250	0.275	0.276	0.272	0.277	0.940	0.940	0.926	0.926	0.929	0.926
30 H	0.245	0.245	0.255	0.255	0.252	0.252	0.943	0.943	0.937	0.937	0.939	0.939
31 H	0.239	0.239	0.250	0.249	0.275	0.275	0.946	0.946	0.940	0.940	0.928	0.928
32 H	0.249	0.250	0.289	0.289	0.261	0.264	0.940	0.940	0.918	0.918	0.934	0.932
33 H	0.255	0.256	0.290	0.290	0.271	0.273	0.937	0.937	0.917	0.918	0.928	0.927
34 H	0.250	0.250	0.256	0.255	0.251	0.251	0.939	0.939	0.936	0.937	0.939	0.938
35 H	0.205	0.205	0.269	0.268	0.240	0.243	0.963	0.963	0.930	0.930	0.945	0.944
36 H	0.239	0.240	0.269	0.269	0.266	0.270	0.945	0.944	0.929	0.929	0.931	0.929
37 H	0.257	0.258	0.266	0.267	0.265	0.269	0.938	0.938	0.933	0.933	0.934	0.932
38 H	0.234	0.235	0.247	0.247	0.238	0.238	0.947	0.947	0.941	0.941	0.945	0.945
39 H	0.249	0.250	0.269	0.271	0.253	0.256	0.939	0.939	0.929	0.928	0.937	0.936
40 H	0.189	0.190	0.259	0.260	0.229	0.229	0.969	0.968	0.933	0.933	0.949	0.949
41 H	0.226	0.227	0.263	0.263	0.252	0.257	0.950	0.950	0.931	0.931	0.938	0.935
42 H	0.229	0.230	0.265	0.264	0.263	0.268	0.949	0.949	0.931	0.931	0.933	0.930
43 H	0.237	0.236	0.249	0.249	0.239	0.239	0.945	0.946	0.939	0.939	0.944	0.944
44 H	0.247	0.248	0.264	0.266	0.251	0.253	0.940	0.940	0.931	0.931	0.938	0.938
45 H	0.270	0.265	0.272	0.268	0.270	0.265	0.930	0.932	0.928	0.930	0.929	0.932
46 H	0.256	0.257	0.265	0.265	0.257	0.259	0.936	0.935	0.931	0.930	0.935	0.934
47 H	0.253	0.255	0.265	0.266	0.255	0.257	0.938	0.936	0.931	0.930	0.937	0.935
48 H	0.262	0.260	0.268	0.266	0.264	0.263	0.933	0.934	0.929	0.930	0.932	0.932
49 H	0.255	0.257	0.265	0.266	0.257	0.260	0.937	0.935	0.931	0.931	0.935	0.934
50 H	0.257	0.258	0.267	0.267	0.259	0.260	0.936	0.935	0.930	0.930	0.935	0.934
51 H			0.461	0.463	0.410	0.457			0.791	0.789	0.841	0.804
52 Cl					-0.710	-0.811					0.514	0.350

Then, in practically all mapped surface of cationic species is observed blue colour because is form is positively charged indicating regions of electrophilic sites on the five rings and, in particular, on the N-H group. In the hydrochloride species, the strong red coloration is observed on the Cl atom due to their available lone pairs, for which, this species is highly nucleophilic around the Cl atoms but less weak on the C=O groups. Here, slight blue colours, typical of electrophilic sites, are observed on the C-H, CH₂ and N-CH₃ groups that belong to the R3 and R5 rings.

Figure 6. Calculated electrostatic potential surfaces on the molecular surfaces for the three forms of heroin in gas phase. Color ranges indicate in each figure: from red to blue. B3LYP functional and 6-31G* basis set. Isodensity value of 0.005.

Now, if the BOs for the three species are evaluated from Table 4, it is possible to observe that the O2 atoms of free base in both media present the higher values while in the other two species the higher values are observed in the O3 atoms. The higher BO value for the N6 atom is observed in the hydrochloride species due to the presence of Cl atom while the C7 atoms in all species present the higher values than the other ones probably because this atom is common to the R2, R3, R4 and R5 rings of the three species and, as a consequence they are strongly linked in a tetrahedral environmental to four C atoms. In relation to the H atoms, the low BO values are observed in the H51 atoms of cationic and hydrochloride species while for the free base in both media the low BO values are observed in the hydrochloride species in both media the low BO values for the Cl atoms in the hydrochloride species in both media reveal the ionic characteristics of their halogen H---Cl bonds.

NBO and AIM studies

Due to the multiple biological properties that presents heroin and to its powerful effects [1-8] is useful and necessary to explore their stabilities in both media by using the donor-acceptor

energy interactions and their topological properties by means of the NBO and AIM2000 programs [40,42] at the level B3LYP/6-31G* level of theory. Thus, in **Table 5** are summarized the main donor-acceptor energy interactions for the three heroin species compared with those reported for morphine and cocaine [11,13].

Table 5. Main donor-acceptor energy interactions (in kJ/mol) for the free base, cationic and hydrochloride structures of heroin compared with the corresponding to morphine and cocaine by using the hybrid B3LYP/6-31G* level of theory.

	HI	EROIN				
Dalagalization	Free	base	Cati	onic	Hydroc	hloride
Delocalization	Gas	PCM	Gas	РСМ	Gas	PCM
$\sigma N6-C9 \rightarrow LP*H51$					47.40	59.40
$\sigma N6-C14 \rightarrow LP*H51$					51.50	60.19
$\sigma N6-C20 \rightarrow LP*H51$					53.50	65.04
$\Delta ET_{\sigma \to LP^*}$					152.4	184.63
$\pi(2)C12$ -C15 $\rightarrow \pi^*C18$ -C22	97.35	97.60	43.18	86.27	92.63	92.13
$\pi(2)C12$ -C15 $\rightarrow \pi^*C21$ -C23	74.95	74.70	34.23	68.00	73.61	73.07
$\pi(2)C18$ - $C22 \rightarrow \pi^*C12$ - $C15$	78.08	77.79	43.81	86.48	81.38	81.63
$\pi(2)C18$ - $C22 \rightarrow \pi^*C21$ - $C23$	92.54	92.54	45.10	89.70	92.80	92.42
$\pi(2)C21$ -C23 $\rightarrow \pi^*$ C12-C15	80.71	80.21	43.85	86.61	81.97	81.55
$\pi(2)C21$ -C23 $\rightarrow \pi^*$ C18-C22	72.73	72.19	37.66	74.99	72.90	72.61
$\Delta ET_{\pi \to \pi^*}$	496.36	495.03	247.83	492.05	495.29	493.41
$\pi *C18-C22 \rightarrow \pi *C12-C15$	806.03	851.59			1146.74	1368.75
$\pi *C21-C23 \rightarrow \pi^* C12-C15$	812.55	828.31			1136.58	
$\Delta ET_{\pi^* \to \pi^*}$	1618.58	1679.9			2283.32	1368.75
$LP(2)O1 \rightarrow \pi^* C18-C22$	121.14	120.59	60.61	120.13	122.93	122.18
$LP(2)O2 \rightarrow \pi^* O4\text{-}C24$	206.91	211.21	94.17	200.64	202.27	206.70
$LP(2)O3 \rightarrow \pi^* O5-C26$	180.49	183.38	82.14	175.35	176.98	180.07
$\Delta ET_{LP \to \pi^*}$	508.54	515.18	236.92	496.12	502.18	508.95
$LP(2)O4 \rightarrow \sigma^* O2\text{-}C24$	143.92	138.32	75.91	142.16	145.76	139.95
$LP(2)O4 \rightarrow \sigma^* C24-C25$	78.46	75.61	37.95	73.48	78.12	75.41
$LP(2)O5 \rightarrow \sigma^* O3-C26$	159.84	153.40	84.48	157.00	161.89	154.99
$LP(2)O5 \rightarrow \sigma^* C26-C27$	78.04	74.78	37.45	72.27	77.25	74.19
$\Delta ET_{LP \to \sigma^*}$	460.26	442.11	235.79	444.91	463.02	444.54
$\sigma O3\text{-}C26 \rightarrow \sigma^* O3\text{-}C22$			71.94			
			71.94			

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2018; Vol. 10 (2): 97-140.

113

$LP(1)N6 \rightarrow LP*H51$					1233.81	1473.53
$LP(4)Cl52 \rightarrow LP*H51$					690.91	299.54
$\Delta ET_{LP \to LP^*}$					1924.72	1773.07
ΔE_{Total}	3083.74	3132.22	792.48	1433.08	5715.93	4648.12
	МО	RPHINE				
Delocalization	Free	base	Cat	ionic	Hydroc	chloride
Delocalization	Gas	PCM	Gas	PCM	Gas	PCM
$\sigma N4-C7 \rightarrow LP*H41$					47.38	59.36
$\sigma N4-C12 \rightarrow LP*H41$					51.58	59.20
$\sigma N4-C18 \rightarrow LP*H41$					54.00	65.10
$\Delta ET_{\sigma \to LP^*}$					152.96	183.66
$\pi(2)C10$ -C13 $\rightarrow \pi^*C16$ -C20	89.90	88.15	77.04	78.37	85.74	84.12
$\pi(2)C10\text{-}C13 {\rightarrow} \pi^*C19\text{-}C21$	81.16	79.25	73.96	72.30	79.66	78.71
$\pi(2)C16\text{-}C20 {\rightarrow} \pi^*C10\text{-}C13$	87.61	87.36	97.76	95.56	91.02	90.40
$\pi(2)C16-C20 \rightarrow \pi^*C19-C21$	78.79	81.04	75.38	77.79	78.58	78.46
$\pi(2)C19$ - $C21 \rightarrow \pi^* C10$ - $C13$	73.22	73.80	77.75	79.16	73.76	74.26
$\pi(2)C19$ - $C21 \rightarrow \pi^* C16$ - $C20$	78.29	76.38	78.79	78.42	78.08	77.83
$\Delta ET_{\pi \to \pi^*}$	488.97	485.97	480.69	481.60	486.84	483.77
π^* C16-C20 $\rightarrow\pi^*$ C10-C13	764.44	896.73	7		1040.46	1069.04
<i>π</i> * <i>C19-C21→π</i> * <i>C10-C13</i>	950.27	992.66	2			
$\Delta ET_{\pi^* \to \pi^*}$	1714.71	1889.39	J		1040.46	1069.04
$LP(2)O1 \rightarrow \pi^* C16-C20$	97.51	103.42	92.10	102.96	100.09	99.13
$LP(2)O3 \rightarrow \pi^* C16-C20$	111.28	106.29	126.34	116.19	114.65	110.53
$\Delta ET_{LP \to \pi^*}$	208.79	209.71	218.44	219.15	214.74	209.66
$LP(1)N4 \rightarrow LP*H41$					1238.02	1473.60
$LP(4)Cl42 \rightarrow LP*H41$					669.88	291.08
$\Delta ET_{LP \to LP^*}$					1907.90	1764.67
ΔE_{Total}	2412.47	2585.07	699.13	700.75	3802.91	3710.81
	CC	OCAINE				
Delocalization	Freel	base	Cati	onic	Hydroc	hloride
	Gas	PCM	Gas	PCM	Gas	PCM
$\sigma N5-C6 \rightarrow LP*H44$					44.81	54.30
$\sigma N5-C7 \rightarrow LP*H44$					58.94	60.99
$\sigma N5-C13 \rightarrow LP*H44$					63.54	69.26
$\Delta ET_{\sigma \to LP^*}$					167.29	184.55
$\pi(2)C17$ -C19 $\rightarrow \pi^*O4$ -C15	95.55	96.56	110.94	107.51	99.23	102.74
$\pi(2)C17$ -C19 $\rightarrow \pi^*C18$ -C20	87.61	87.32	82.56	82.60	88.45	88.16

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2018; Vol. 10 (2): 97-140.

114

$\pi(2)C17\text{-}C19 {\rightarrow} \pi^*C21\text{-}C22$	77.46	77.58	71.27	71.81	76.33	75.45
$\pi(2)C18$ -C20 $\rightarrow \pi^*$ C17-C19	78.79	78.29	80.51	81.01	77.75	77.08
$\pi(2)C18$ -C20 $\rightarrow \pi^*C21$ -C22	90.20	90.16	89.79	89.66	89.70	89.54
$\pi(2)$ C21-C22 $\rightarrow \pi^*$ C17-C19	92.88	93.30	101.53	100.19	94.26	95.51
$\pi(2) C21\text{-}C22 \rightarrow \pi^*C18\text{-}C20$	76.12	75.95	73.23	73.86	76.20	76.03
$\Delta ET_{\pi \to \pi^*}$	598.62	599.16	609.82	606.64	601.92	604.51
$\pi^*O4\text{-}C15 \rightarrow \pi^*C17\text{-}C19$	385.94	384.27	279.22	260.08	304.01	287.33
π^* C17-C19 $\rightarrow\pi^*$ C18-C20			890.55	890.88		
$\Delta ET_{\pi^* \to \pi^*}$	385.94	384.27	1169.77	1150.96	304.01	287.33
$LP(2)O1 \rightarrow \sigma^*O4\text{-}C15$	205.36	210.13	165.15	183.13	194.29	36.41
$LP(2)O2 \rightarrow \sigma^*O3\text{-}C14$	200.97	209.04	264.05	250.09	200.47	206.49
$LP(2)O3 \rightarrow \sigma^*O2\text{-}C14$	145.34	137.69	118.59	124.77	140.78	136.39
$LP(2)O3 \rightarrow \sigma^*N5-C14$			75.16	42.85		
$LP(2)O3 \rightarrow \sigma^*C8\text{-}C14$	81.64	78.63	56.85	64.54	88.57	89.12
$LP(2)O4 \rightarrow \sigma^*O1\text{-}C15$	137.02	132.13	152.49	141.49	139.03	134.60
$LP(2)O4 \rightarrow \sigma^*C15\text{-}C17$	75.24	73.28	70.73	70.68	73.53	72.19
$\Delta ET_{LP \to \sigma^*}$	845.57	840.89	903.01	877.55	836.67	675.20
$LP(1)N5 \rightarrow LP*H44$	1				1323.30	1540.71
$LP(4)Cl45 \rightarrow LP*H44$	M		74		494.24	244.49
$\Delta ET_{LP \to LP^*}$					1817.54	1785.20
ΔE_{Total}	1830.13	1824.32	2682.60	2635.15	3727.43	3536.79

The total energy values show clearly that the hydrochloride species of heroin in both media are highly stables with highest values than the corresponding to morphine and cocaine and, then, similar results are observed for the free base of heroin although with lower energy values. However, the cationic species of cocaine are most stable, with practically similar values in both media, than the corresponding to heroin and morphine. Besides, the cationic species of heroin in solution shows a rare and high stability not observed in the morphine and cocaine species, as compared with the value in gas phase. Obviously, these studies clearly support the high stabilities of those three heroin species against to the corresponding to morphine and cocaine.

The Bader's theory of atoms in molecules is very interesting to analyze all types of inter- and intra-molecular interactions, such as ionic, covalent, H bonds and halogen bonds interactions [43]. Hence, the AIM2000 program [42] was employed to compute the topological properties of those three heroin species in the bond critical points (BCPs), ring critical points (RCPs) and, in both media by using the B3LYP/6-31G* level of theory. Thus, in the BCPs and RCPs

of all heroin species were calculated the electron density, $\rho(r)$, the Laplacian values, $\nabla^2 \rho(r)$, the eigenvalues ($\lambda 1$, $\lambda 2$, $\lambda 3$) of the Hessian matrix and, the $|\lambda 1|/\lambda 3$ ratio. These properties in both media can be easily seen in **Tables 6** and **7** compared with the reported for morphine and cocaine while in **Figures 7**, **8** and **9** are perfectly observed the molecular graphics of those three heroin species in gas phase with the different H bonds (H---H, O---O, H---O), BCPs, RCPs and the new RCPs identified. Obviously, the three heroin species have the five own RCPs which are identified in those figures as R1, R2, R3, R4 and R5 and, where R5 corresponds to tropane ring. For the free base of heroin in gas phase, there are two O5...H45 and O2...O5 interactions and two RCPs new, N1 and N2 (fig. 7) while in solution appears a new H34...H40 interaction. Hence, due to higher number of interactions, the heroin free base is most stable than morphine and cocaine ones. But, the higher topological parameters observed for the tropane ring R3 of morphine, in both media; indicate that the effect of two acetyl groups in heroin is to reduce those properties.

Table 6. Analysis of the topological properties for the free base and cationic structures of heroin compared with the corresponding to morphine and cocaine by using the hybrid B3LYP/6-31G* level of theory.

		Fr	ee base /HEROIN/Gas				
Parameter (a.u.)	O5H45/N1	0205/N2	RCP1	RCP2	RCP3	RCP4	RCP5
$\rho(r_c)$	0,0040/0,0026	0,0036/0,0026	0,0174	0,0427	0,0185	0,0203	0,0182
$ abla^2 ho(r_c)$	0,0160/0,0132	0,0176/0,0164	0,1162	0,3042	0,1204	0,1604	0,1192
λ_1	-0,0038/-0,0021	-0,0032/-0,0021	-0,0117	-0,0460	-0,0132	-0,0149	-0,0122
λ_2	-0,0035/0,0042	-0,0027/0,0050	0,0563	0,1627	0,0547	0,0752	0,0619
λ_3	0,0235/0,0113	0,0236/0,0133	0,0716	0,1875	0,0792	0,1000	0,0694
$ \lambda_1 /\lambda_3$	0,1617/0.1858	0.1356/0.1579	0,1634	0,2453	0,1667	0,1490	0,1758
Distance (Å)	2.825	3.282					
			Free base/PCM				
Parameter (a.u.)	O5H45/N1	O2O5/N2	H34H40/N3	RCP1/RCP2	RCP3	RCP4	RCP5
$\rho(r_c)$	0,0023/0,0020	0,0038/0,0031	0,0107/0,0105	0,0177/0,0420	0,0185	0,0203	0,0181
$ abla^2 ho(r_c)$	0,0104/0,010	0,0181/0,0181	0,0438/0,0490	0,1184/0,2984	0,1212	0,1600	0,1182
λ_1	-0,0020/-0,0016	-0,0033/-0,0026	-0,0105/-0,0089	-0,0117/-0,0455	-0,0131	-0,0148	-0,0125
λ_2	-0,0017/0,0028	-0,0029/0,0054	-0,0041/0,0047	0,0582/0,1602	0,0558	0,0758	0,0604
λ_3	0,0140/0,0093	0,0244/0,0153	0,0584/0,0532	0,0718/0,1838	0,0784	0,0989	0,0703
$ \lambda_1 /\lambda_3$	0.1428/0.1720	0.1352/0.1699	0.1798/0.1673	0.1629/0.2475	0,1671	0,1496	0,1778
Distance (Å)	3.056	3.260	2.120				
		(Cation/HEROIN/Gas				
Parameter (a.u.)	O5H45/N1	O2O5/N2	H34H40/N3	RCP1/RCP2	RCP3	RCP4	RCP5

$\rho(r_c)$	0.0029/ 0.0023	0.0041/0.0031	0.0097/0.0097	0.0174/0.0426	0.0186	0.0203	0.0177
$ abla^2 ho(r_c)$	0.0124/0.0120	0.0192/0.0184	0.0412/0.0432	0.01160/0.3052	0.1212	0.1600	0.1100
λ_1	-0.0026/-0.0019	-0.0037/-0.0026	-0.0087/-0.0079	-0.0116/-0.0460	-0.0135	-0.0148	-0.0125
λ_2	-0.0023/0.0037	-0.0032/0.0059	-0.0022/0.0025	0.0558/0.1656	0.0530	0.0747	0.0596
λ_3	0.0174/0.0101	0.0261/0.0150	0.0520/0.0486	0.0719/0.1855	0.0816	0.1003	0.0629
$ \lambda_1 /\lambda_3$	0.1494/0.1881	0.1417/0.1733	0.1673/0.1625	0.1613/0.2479	0.1654	0.1476	0.1987
Distance (Å)	2.962	3.227	2.153				
			Cation/PCM				
Parameter	05H45/N1	0205/N2	H34H40/N3	RCP1/RCP2	RCP3	RCP4	RCP5
(a.u.)	0511-5/111	0103/112	11341140/113	Kei l/Kei 2	Ker 5	NCI 4	Ker 5
$\rho(r_c)$	0.00237/0.00205	0.0039/0.0032	0.0102/0.0101	0.0176/0.0420	0.0186	0.0203	0.0179
$\nabla^2 \rho(r_c)$	0.0104/0.0106	0.0188/0.0188	0.0428/0.0457	0.1184/0.2992	0.1217	0.1600	0.1120
λ_1	-0.0020/-0.0017	-0.0035/-0.0028	-0.0095/-0.0083	-0.0116/-0.0454	-0.0133	-0.0148	-0.0127
λ_2	-0.0017/0.0028	-0.0030/0.0056	-0.0031/0.0035	0.0582/0.1615	0.0544	0.0757	0.0598
λ_3	0.0141/0.0094	0.0252/0.0161	0.0554/0.0505	0.0717/0.1830	0.0806	0.0992	0.0647
$ \lambda_1 /\lambda_3$	0.1418/0.1808	0.1388/0.1739	0.1746/0.1643	0.1618/0.2480	0,1650	0,1492	0,1963
Distance (Å)	3.054	3.243	2.126				
		Free	e base/MORPHINE/Ga	S			
Parameter	О1Н39	RCPN	RCP1	RCP2	RCP3	RCP4	RCP5
(a.u.)							
$\rho(r_c)$	0.0218	0.0203	0.0177	0.0414	0.0181	0.0184	0.0204
$\nabla^2 \rho(\mathbf{r_c})$	0.0814	0.1096	0.1181	0.2944	0.1188	0.1206	0.1609
λ_1	-0.0260	-0.0197	-0.0116	-0.0451	-0.0122	-0.0131	-0.0147
λ_2	-0.0178	0.0248	0.0575	0.1581	0.0615	0.0545	0.0748
λ_3	0.1252	0.1045	0.0721	0.1814	0.0695	0.0791	0.1008
$ \lambda_1 /\lambda_3$	0.2077	0.1885	0.1609	0.2486	0.1755	0.1656	0.1458
Distance (Å)	2.097						
			Free base/PCM				
Parameter	H28H34	RCPN	RCP1	RCP2	RCP3	RCP4	RCP5
(a.u.)						0.0104	0.0000
$\rho(r_c)$	0.0107	0.0105	0.0179	0.0415	0.0181	0.0184	0.0203
$V^2\rho(r_c)$	0.0438	0.0492	0.1198	0.2951	0.1178	0.1208	0.1600
λ_1	-0.0106	-0.0089	-0.0116	-0.0449	-0.0125	-0.0129	-0.0146
λ_2	-0.0043	0.0049	0.0593	0.1582	0.0598	0.0557	0.0743
λ ₃	0.0586	0.0531	0.0720	0.1819	0.0704	0.0780	0.1000
$ \lambda_1 /\lambda_3$	0.1809	0.1676	0.1611	0.2468	0.1776	0.1654	0.1460
Distance (A)	2.117						
Demonstern		Ca	tion/ MORPHINE Gas				
(a.u.)			RCP1	RCP2	RCP3	RCP4	RCP5
$\rho(r_c)$			0.0166	0.0434	0.0177	0.0186	0.0166
$\nabla^2 \rho(\mathbf{r_c})$			0.1104	0.3092	0.1100	0.1207	0.1104
λ_1			-0.0119	-0.0447	-0.0123	-0.0139	-0.0119
λ_2			0.0522	0.1646	0.0598	0.0514	0.0522
λ_3			0.0700	0.1893	0.0625	0.0831	0.0700
$ \lambda_1 /\lambda_3$			0.1700	0.2361	0.1968	0.1673	0.1700
			Cation/PCM				
-							

Parameter	H28H24	DCDN	DCD1	BCD	DCD2	RCD4	RCP
(a.u.)	11201134	NUTIN	NUT I	NUT 2	ксгэ	NUT4	nurð
$\rho(r_c)$	0.0104	0.0102	0.0177	0.0415	0.0179	0.0186	0.0203
$ abla^2 ho(r_c)$	0.0434	0.0468	0.1194	0.2958	0.1117	0.1216	0.1600
λ_1	-0.0098	-0.0084	-0.0115	-0.0448	-0.0127	-0.0132	-0.0147
λ_2	-0.0036	0.0042	0.0591	0.1594	0.0597	0.0541	0.0743
λ_3	0.0569	0.0510	0.0717	0.1812	0.0647	0.0805	0.1003
$ \lambda_1 /\lambda_3$	0.1722	0.1647	0.1604	0.2472	0.1963	0.1640	0.1466
Distance (Å)	2.113						
			Free base/COCAINE/Gas				
Parameter	02 1121	DCDN	DCD1	DCD2	DCD2		
(a.u.)	03Н31	KCPN	KCPI	RCP2	RCP3		
$\rho(r_c)$	0.0082	0.0080	0.0202	0.0194	0.0393		
$ abla^2 ho(r_c)$	0.0316	0.0348	0.1617	0.1252	0.2660		
λ_1	-0.0069	-0.0052	-0.0152	-0.0131	-0.0399		
λ_2	-0.0036	0.0043	0.0878	0.0595	0.1489		
λ_3	0.0422	0.0356	0.0892	0.0787	0.1569		
$ \lambda_1 /\lambda_3$	0.1635	0.1461	0.1704	0.1665	0.2543		
Distance (Å)	2.627						
			Free base/PCM				
Parameter	0.0 Wat	D CDV	D (D)	D CD4	D CD4		
(a.u.)	O3H31	RCPN	RCPI	RCP2	RCP3		
$\rho(r_c)$	0.0074	0.0074	0.0201	0.0193	0.0395		
$\nabla^2 \rho(r_c)$	0.0294	0.0307	0.1612	0.1236	0.2654		
λ_1	-0.0059	-0.0053	-0.0152	-0.0133	-0.0402		
λ_2	-0.0014	0.0016	0.0873	0.0587	0.1469		
λ_3	0.0367	0.0343	0.0890	0.0782	0.1586		
$ \lambda_1 /\lambda_3$	0.1608	0.1545	0.1708	0.1701	0.2535		
Distance (Å)	2.690						
			Cation/ COCAINE/Gas				
Parameter	02 1144	DCDN	DCD1	DCD2	DCD2		
(a.u.)	03н44	KUPN	KCFI	KCP2	KCF3		
$\rho(r_c)$	0.0419	0.0165	0.0201	0.0188	0.0374		
$ abla^2 ho(r_c)$	0.1304	0.0989	0.1614	0.1164	0.2535		
λ_1	-0.0645	-0.0123	-0.0152	-0.0127	-0.0372		
λ_2	-0.0631	0.0479	0.0877	0.0551	0.1442		
λ_3	0.2580	0.0632	0.0889	0.0741	0.1465		
$ \lambda_1 /\lambda_3$	0.2500	0.1946	0.1710	0.1714	0.2539		
Distance (Å)	1.778						
			Cation/PCM				
Parameter	02 1144	DODNI	C10 1129	DODNI	D CD1	DCD2	DCD2
(a.u.)	U3H44	KUPNI	U19H38	KUPNI	KCPI	KCP2	ксрз
$\rho(r_c)$	0.0298	0.0145	0.0005	0.0005	0.0201	0.0188	0.0377
$ abla^2 ho(r_c)$	0.0894	0.0827	0.0021	0.0025	0.1612	0.1174	0.2563
λ_1	-0.0402	-0.0104	-0.0002	-0.0001	-0.0152	-0.0128	-0.0378
λ_2	-0.0388	0.0378	-0.0001	0.0002	0.0872	0.0559	0.1455
λ_3	0.1685	0.0553	0.0024	0.0024	0.0891	0.0743	0.1485

$ \lambda_1 /\lambda_3$	0.2386	0.1881	0.0833	0.0417	0.1706	0.1723	0.2545
Distance (Å)	1.942		4.038				

Table 7. Analysis of the topological properties for the hydrochloride structures ofmorphine and cocaine by using the hybrid B3LYP/6-31G* level of theory.

				H	Hydrochloride/HER	ROIN/GAS					
Parameter (a.u.)	05H45/N1	O2O5/N2	Cl52H28	Cl52H51	N3	CI52H31/N4	RCP1	RCP2	RCP3	RCP4	RCP5
$\rho(r_c)$	0.0051/0.0029	0.0038/0.0027	0.0101	0.0736	0.0095	0.0063/0.0062	0.0172	0.0428	0.0186	0.0203	0.0179
$\nabla^2 \rho(\mathbf{r}_{z})$	0.0196/0.0148	0.0184/0.0162	0.0316	0.0948	0.0366	0.0202/0.0220	0.1148	0.3056	0.1216	0.1603	0.1136
λ_1	-0.0049/-0.0024	-0.0034/-0.0020	-0.0081	-0.1194	-0.0076	-0.0038/-0.0034	-0.0118	-0.0459	-0.0136	-0.0149	-0.0126
λ_2	-0.0046/0.0047	-0.0028/0.0051	-0.0051	-0.1193	0.0056	-0.0016/0.0020	0.0547	0.1646	0.0533	0.0750	0.0608
λα	0.0291/0.0126	0.0245/0.0131	0.0449	0.3336	0.0386	0.0257/0.0233	0.0720	0.1870	0.0818	0.1002	0.0653
$ \lambda_4 /\lambda_3$	0.1684/0.1904	0.1388/0.1527	0.1804	0.3579	0.1969	0.1479/0.1459	0.1639	0.2455	0.1663	0.1487	0.1930
Distance (Å)	2.723	3.261	2.781	1.755		3.055					
				F	Iydrochloride/ HEB	ROIN/PCM					
Parameter (a.u.)	O5H45/N1	0205/N2		Cl52H51	H34H40	N3	RCP1	RCP2	RCP3	RCP4	RCP5
$\rho(r_c)$	0.0022/0.0019	0.0038/0.0031		0.0412	0.0104	0.0103	0.0176	0.0420	0.0186	0.0203	0.0178
$\nabla^2 \rho(r_{\rm c})$	0.0098/0.0101	0.0183/0.0183		0.0767	0.0436	0.0467	0.1180	0.2993	0.1220	0.1600	0.1116
λ_i	-0.0019/-0.0016	-0.0034/-0.0027		-0.0525	-0.0095	-0.0084	-0.0117	-0.0456	-0.0134	-0.0148	-0.0127
λ_2	-0.0016/0.0026	-0.0029/0.0054		-0.0523	-0.0029	0.0032	0.0575	0.1616	0.0546	0.0758	0.0596
λα	0.0134/0.0090	0.0246/0.0155		0.1817	0.0560	0.0518	0.0720	0.1833	0.0806	0.0992	0.0647
$ \lambda_1 /\lambda_3$	0.1418/0.1777	0.1382/0.1742		0.2889	0.1696	0.1622	0.1625	0.2488	0.1663	0.1492	0.1963
Distance (Å)	3.079	3.256		2.036	2.133						
				E	Iydrochloride/MOF	RPHINE/GAS					
Parameter (a.u.)	Cl42H22	RCPN1	Cl42H25	RCPN2	Cl42H41	RCPN3	RCP1	RCP2	RCP3	RCP4	RCP5
ρ(r,)	0.0105	0.0098	0.0065	0.0064	0.0724	0.0098	0.0176	0.0414	0.0179	0.0186	0.0204
$\nabla^2 \rho(\mathbf{r}_{s})$	0.0329	0.0380	0.0208	0.0228	0.0957	0.0380	0.1176	0.2947	0.1132	0.1212	0.1608
λ_1	-0.0085	-0.0081	-0.0040	-0.0035	-0.1168	-0.0081	-0.0116	-0.0451	-0.0126	-0.0134	-0.0147
λ_2	-0.0055	0.0058	-0.0019	0.0025	-0.1166	0.0058	0.0569	0.1595	0.0602	0.0534	0.0748
λ_d	0.0469	0.0402	0.0268	0.0238	0.3291	0.0402	0.0723	0.1803	0.0655	0.0812	0.1007
$ \lambda_1 /\lambda_3$	0.1812	0.2015	0.1493	0.1471	0.3549	0.2015	0.1604	0.2501	0.1924	0.1650	0.1460
Distance (A)	2.760		3.038	T	1.762						
Parameter (2 11)	H28H34	RCPN	01	RCPN2	iydrochloride/MOF	CPHINE/PCM	RCPI	RCP2	RCP3	RCP4	RCP5
D(r.)	0.0108	0.0106	0.0207	0.0198			0.0176	0.0414	0.0178	0.0185	0.0203
$\nabla^2 \rho(\mathbf{r}_e)$	0.0450	0.0490	0.0800	0.1042			0.1178	0.2948	0.1117	0.1216	0.1602
λ,	-0.0104	-0.0086	-0.0237	-0.0187			-0.0117	-0.0449	-0.0126	-0.0132	-0.0147
λ2	-0.0044	0.0052	-0.0143	0.0192			0.0574	0.1597	0.0591	0.0547	0.0742
λα	0.0596	0.0524	0.1182	0.1036			0.0720	0.1799	0.0652	0.0801	0.1007
$ \lambda_1 /\lambda_3$	0.1745	0.1641	0.2005	0.1805			0.1625	0.2496	0.1933	0.1648	0.1460
Distance (Å)	2.101		2.133								

119

					Hydrochloride/C	OCAINE/GAS					
Parameter (a.u.)	0301	RCPN1	Cl45H31	RCPN2	Cl45H37	RCPN3	Cl45H44	RCPN4	RCP1	RCP2	RCP3
ρ(r,)	0.0143	0.0126	0.0105	0.0092	0.0083	0.0061	0.0603	0.0092	0.0202	0.0189	0.0381
$\nabla^2 \rho(\mathbf{r}_z)$	0.0501	0.0629	0.0341	0.0376	0.0276	0.0253	0.0984	0.0376	0.1617	0.1186	0.2580
λι	-0.0124	-0.0100	-0.0086	-0.0068	-0.0067	-0.0039	-0.0906	-0.0068	-0.0152	-0.0127	-0.0377
λ2	-0.0109	0.0172	-0.0064	0.0080	-0.0062	0.0058	-0.0900	0.0080	0.0879	0.0553	0.1459
λa	0.0734	0.0557	0.0492	0.0363	0.0405	0.0234	0.2789	0.0363	0.0891	0.0759	0.1498
$ \lambda_1 /\lambda_3$	0.1689	0.1795	0.1748	0.1873	0.1654	0.1667	0.3248	0.1873	0.1706	0.1673	0.2517
Distance (A)	2.750		2.744		2.838		1.843				
					Hydrochloride/ C	OCAINE/PCM					
Parameter (a.u.)	0301	RCPN1	Cl45H31	RCPN2	Cl45H37	RCPN3	Cl45H44	RCPN4	RCP1	RCP2	RCP3
ρ(r _c)	0.0141	0.0126			0.0034	0.0027	0.0369	0.0027	0.0201	0.0188	0.0380
$\nabla^2 \rho(\mathbf{r}_z)$	0.0487	0.0616			0.0100	0.0107	0.0728	0.0107	0.1612	0.1176	0.2578
λι	-0.0126	-0.0095			-0.0023	-0.0006	-0.0453	-0.0006	-0.0152	-0.0128	0.0375
λ_2	-0.0105	0.0164			-0.0021	0.0026	-0.0451	0.0026	0.0873	0.0545	0.1450
λα	0.0718	0.0548			0.0144	0.0087	0.1632	0.0087	0.0889	0.0758	0.1502
$ \lambda_1 /\lambda_3$	0.1755	0.1734			0.1597	0.0690	0.2776	0.0690	0.1710	0.1689	-0.2497
Distance (Å)	2.755		3.153		3.309		2.088				

Figure 7. Details of the molecular model for the free base of heroin in gas phase showing the geometry of all their bond critical points (BCPs) and ring critical points (RCPs) at the B3LYP/6-31G* level of theory.

Figure 8. Details of the molecular model for the cationic form of heroin in gas phase showing the geometry of all their bond critical points (BCPs) and ring critical points (RCPs) at the B3LYP/6-31G* level of theory.

Analyzing the cationic heroin, there are observed three O5...H45, O2...O5 and H34...H40 interactions and four new RCPs in both media indicating clearly its higher stability against to morphine and cocaine ones. The hydrochloride heroin species are clearly most stable than the morphine and cocaine ones due to the observed five new interactions in gas phase and only four in solutions. Table 7 shows that the topological properties for the tropane rings of heroin and morphine have practically the same values although the number of interactions favours clearly to heroin. Here, the cocaine species present lower numbers of interactions and RCPs and, for these reasons, are the most unstable species. Hence, these AIM studies support evidently the higher stabilities of the three forms of heroin, as compared with those observed for morphine and cocaine.

121

Figure 9. Details of the molecular model for the hydrochloride form of heroin in gas phase showing the geometry of all their bond critical points (BCPs) and ring critical points (RCPs) at the B3LYP/6-31G* level of theory.

Frontier orbitals and global descriptors studies

The above NBO and AIM studies have revealed that the free base and hydrochloride species of heroin are most stable than those corresponding to morphine and cocaine, however, the cationic cocaine species is most stable in the two media than corresponding to morphine and heroin. Hence, it is very important to analyze and know why the cationic form of cocaine is most stable than those corresponding to heroin and morphine. These differences could probably be explained if the reactivities and behaviours for those three heroin species are analyzed in both media by using the frontier orbitals and some global descriptors [23-30]. Consequently, for the free base, cationic and hydrochloride structures of heroin the HOMO and LUMO, energy band gap [23,24], chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) [25-30] were calculated. Thus, in **Table 8** those parameters for all heroin species computed in both media by using the hybrid B3LYP/6-31G* level of theory are presented together with the corresponding to morphine, cocaine and tropane alkaloids [11-13]. Then, the behaviours of all these tropane alkaloids in both media can be easily seen in **Figures 10**, **11** and **12**. Analyzing first the HOMO, LUMO and Gap values for the free base, it is

observed that cocaine in both media present the most negative HOMO and LUMO values and low gap values while tropane alkaloid in both media has the highest positive LUMO and gap values. Thus, the tropane alkaloid presents most negative HOMO and most positive gap values than the other ones while the LUMO values are practically similar in all alkaloids. Here, the cationic species of morphine is the most reactive than the other ones but cation heroin is most reactive than cation cocaine. In these cationic species, the behaviors of all descriptors are comparable in all alkaloids with exception of global nucleophilicity index (E) for tropane alkaloid that notably presents the lower values than the other ones.

Table 8. Calculated HOMO and LUMO orbitals, energy band gap, chemical potential (μ) , electronegativity (χ) , global hardness (η) , global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) for the free base, cationic and hydrochloride structures of morphine, cocaine and tropane by using the hybrid B3LYP/6-31G* level of theory.

	HEROIN ^a											
Frontier orbitals (eV)	Free	base	Cat	ionic	Hydroc	hloride						
	Gas	PCM	Gas	PCM	Gas	PCM						
НОМО	-5.7490	-5.7471	-8.7639	-8.7907	-5.8841	-5.1808						
LUMO	-0.0927	-0.1057	-3.3371	-3.4150	-0.5817	-0.7339						
GAP	5.6563	5.6414	5.4268	5.3757	5.3024	4.4469						
		De	escriptors (eV)									
χ	-2.8282	-2.8207	-2.7134	-2.6879	-2.6512	-2.2235						
μ	-2.9209	-2.9264	-6.0505	-6.1029	-3.2329	-2.9574						
η	2.8282	2.8207	2.7134	2.6879	2.6512	2.2235						
S	0.1768	0.1773	0.1843	0.1860	0.1886	0.2249						
ω	1.5083	1.5180	6.7459	6.9284	1.9711	1.9667						
Е	-8.2606	-8.2545	-16.4174	-16.4035	-8.5711	-6.5755						
		Ν	MORPHINE ^b									
Frontier orbitals (eV)	Free	base	Cat	ionic	Hydroc	hloride						
	Gas	PCM	Gas	PCM	Gas	PCM						
НОМО	-5.5670	-5.3367	-8.5413	-8.4347	-5.8917	-5.1973						
LUMO	0.0374	0.1383	-3.3524	-3.4103	-0.4500	-0.6133						
GAP	5.6044	5.4750	5.1889	5.0244	5.4417	4.5840						
		De	escriptors (eV)									
χ	-2.8022	-2.7375	-2.5945	-2.5122	-2.7209	-2.2920						
μ	-2.7648	-2.5992	-5.9469	-5.9225	-3.1709	-2.9053						
η	2.8022	2.7375	2.5945	2.5122	2.7209	2.2920						
S	0.1784	0.1826	0.1927	0.1990	0.1838	0.2182						

ω	1.3639	1.2339	6.8155	6.9811	1.8476	1.8414						
Е	-7.7475	-7.1153	-15.4288	-14.8785	-8.6274	-6.6589						
			COCAINE ^c									
Frontier orbitals (eV)	Free	Free base Cationic Hydrochloride										
	Gas	PCM	Gas	PCM	Gas	РСМ						
НОМО	-5.9267	-6.0125	-9.3162	-9.2302	-5.6938	-4.9833						
LUMO	-1.0687	-1.0638	-3.8694	-3.7642	-1.1856	-1.3020						
GAP	4.858	4.9487	5.4468	5.4660	4.5082	3.6813						
		De	escriptors (eV)									
χ	-2.4290	-2.4744	-2.7234	-2.7330	-2.2541	-1.8407						
μ	-3.4977	-3.5382	-6.5928	-6.4972	-3.4397	-3.1427						
η	2.4290	2.4744	2.7234	2.7330	2.2541	1.8407						
S	0.2058	0.2021	0.1836	0.1829	0.2218	0.2716						
ω	2.5183	2.5297	7.9799	7.7229	2.6244	2.6828						
Е	-8.4959	-8.7546	-17.9548	-17.7568	-7.7534	-5.7845						
		TROP	ANE ALKALOII) ^d								
Frontier orbitals (eV)	Free	base	Catio	nic	Hydroc	hloride						
	Gas	PCM	Gas	PCM	Gas	РСМ						
НОМО	-5.4945	-5.6725	-12.9365	-12.9433	-5.5910	-4.9043						
LUMO	2.0561	1.9886	-3.3770	-3.4183	1.2336	1.0076						
GAP	7.5506	7.6611	9.5595	9.5250	6.8246	5.9119						
		De	escriptors (eV)									
χ	-3.7753	-3.8306	-4.7798	-4.7625	-3.4123	-2.9560						
μ	-1.7192	-1.8420	-8.1567	-8.1808	-2.1787	-1.9483						
η	3.7753	3.8306	4.7798	4.7625	3.4123	2.9560						
S	0.1324	0.1305	0.1046	0.1050	0.1465	0.1691						
ω	0.3914	0.4429	6.9598	7.0263	0.6955	0.6421						
Е	-6.4905	-7.0557	-38.9872	-38.9613	-7.4343	-5.7592						
$\gamma = - F(I \cup MO) - F(I)$	HOMO)1/2	$\cdot \mathbf{u} = \mathbf{F} \mathbf{U} \mathbf{U}$	MO) + F(HOM)	$[0)]/2 \cdot n - [$	F(I IIMO) - F	(HOMO)1/2·						

 $\chi = - [E(LUMO) - E(HOMO)]/2;$ μ = [E(LUMO) + E(HOMO)]/2; η = [E(LUMO) - E(HOMO)]/2; $S = \frac{1}{2}\eta; \omega = \frac{\mu^2}{2}\eta;$ E=μ*η

^aThis work, ^bFrom Ref [30], ^cFrom Ref [31]

Here, heroin and morphine have practically the same behaviours in both media but the HOMO values for heroin in both media are slightly most negative in heroin than in morphine. Here, the free base of heroin is most reactive than morphine but cocaine is the most reactive of all alkaloids while tropane the less reactive. In relation to the descriptors, heroin and morphine present similar behaviours in both media while the higher differences are observed in the values for cocaine and tropane. Thus, the free base of cocaine presents higher electronegativity (χ) and global electrophilicity index (ω) values while lower chemical potential (μ) and global nucleophilicity index (E) than the other alkaloids. If now the cationic

species are analyzed from Figure 8 and Table 10, it is observed analogous behaviors in both media.

Figure 10. Frontier orbitals (upper) and descriptors values (bottom) for the free base of heroin in gas and aqueous solution phases compared with the corresponding to morphine, cocaine and tropane at the B3LYP/6-31G* level of theory.

Evidently the presence of other groups linked to tropane ring increase significantly the reactivity of alkaloid, specifically of its cationic form. When the hydrochloride species are compared, the lower HOMO, LUMO and gap values are observed for cocaine while the higher values for tropane.

Figure 11. Frontier orbitals (upper) and descriptors values (bottom) for the cationic form of heroin in gas and aqueous solution phases compared with the corresponding to morphine, cocaine and tropane at the B3LYP/6-31G* level of theory.

Figure 12. Frontier orbitals (upper) and descriptors values (bottom) for the hydrochloride form of heroin in gas and aqueous solution phases compared with the corresponding to morphine, cocaine and tropane at the B3LYP/6-31G* level of theory.

These forms for heroin and morphine have comparable values but, the hydrochloride heroin form is the most reactive than the other ones while tropane is the least reactive of all alkaloids. Here newly it is evidenced that when other groups are linked to tropane ring the reactivity of alkaloid increases the reactivity of hydrochloride form. The behaviors of descriptors for this form is similar to the free base showing clearly that tropane alkaloid is the less reactive and, for this reason, that species has the most global hardness (η) values in both media. The hydrochloride form of cocaine has higher global electrophilicity index (ω) while the heroin and morphine ones have the lower global nucleophilicity index (E) values. These results could suggest a probable explanation why the hydrochloride heroin form in gas phase is the most reactive than the other ones but in solution, the cocaine species is the most reactive.

Here, the potential pharmacological properties for the three heroin species were analyzed taking into account the rule of five states suggested by Lipinski's and Veber [44,45]. Hence, the three species could present absorption or permeation because: (i) the cationic and hydrochloride species have a only NH group (< number than 5 H-bond donors), (ii) the molecular weights for the three species are between 369.411 and 423.89 g/mol <<< than 500 and, (iii) the three species have only an N and five O atoms H-bond acceptor (< 10 H-bond acceptors). Accordingly, the three heroin species could present potential pharmacological properties, as they are broadly known.

Vibrational analysis

The three heroin species in both media were optimized with C_1 symmetries by using hybrid B3LYP/6-31G* level of theory. The number of normal vibration modes expected for the free base, cationic and hydrochloride structures are 144, 147 and 150, respectively which present activities in both infrared and Raman spectra. The experimental available infrared and Raman spectra for the free base and the hydrochloride forms of heroin in solid state were taken from Ref [18]. Both spectra are compared in **Figures 13** and **14** with the corresponding predicted to the free base, cationic and hydrochloride heroin forms in gas phase by using B3LYP/6-31G* level of theory. Note that very good correlations are observed among experimental and theoretical ones, especially when the Raman activities obtained by the calculations are converted in Raman intensities by using known equations [46,47].

Figure 13. Comparisons between the experimental available FTIR spectrum of hydrochloride form of heroin in the solid state [18] with the corresponding predicted for the free base, cationic and hydrochloride species in the gas phase at B3LYP/6-31G* level of theory.

The most intense band, predicted in the IR spectrum of hydrochloride form at 1817 cm⁻¹ which is shifted up to 1746 cm⁻¹ by using SQM calculations, is attributed to the N6-H51 and Cl52-H51 stretching modes, in form similar to the observed in morphine [11]. Here, the intensities ratio between the most intense bands in the predicted IR spectrum of hydrochloride form is different from those observed in the experimental spectrum, as observed in Figure 13, indicating probably that the hydrochloride form is present as cationic species, as was also observed in the spectra of morphine and cocaine [11,13]. Obviously, the differences among experimental and theoretical spectra can be in part associated to the calculations performed in gas phase, for the isolated molecules and, also to the packing forces because these forces were not considered here. The SQMFF procedure, the Molvib program, the normal internal coordinates for the three heroin species and scale factors predicted at the 6-31G* level of theory [16] were used to obtain the harmonic force fields. Only, potential energy distribution (PED) contributions ≥ 10 % were considered to perform the complete assignments for the three heroin species. Table 9 are presented the observed and calculated wavenumbers together with the proposed assignments while the discussions of some assignments by regions are presented below.

Figure 14. Comparisons between the experimental available Raman spectra of free base and hydrochloride species of heroin in the solid state [18] with the corresponding predicted for the free base, cationic and hydrochloride species in the gas phase at B3LYP/6-31G** level of theory

Table 9.	Observed	and	calculated	wavenumbers	(cm ⁻¹) and	assignments	for	the	free
base, cat	ionic and h	ydroo	chloride spo	ecies of Heroin	in gas phas	e			

	Experi	mental				В	3LYP/6-31G* Method ^a		
Free	base	Hydrod	chloride		Freebase		Cationic		Hydrochloride
FTIR ^c	Raman ^d	FTIR ^c	Raman ^d	SQM ^b	Assignments	SQM ^b	Assignments	SQM ^b	Assignments
3483vw		3452w	3400w	3078	vC23-H44	3268	vN6-H51	3081	vC23-H44
		3393sh	3082m	3077	vC19-H39	3095	vC19-H39	3080	vC19-H39
3059vw	3060m	3228sh		3055	vC21-H43	3090	vC23-H44	3057	vC21-H43
				3051	v _a CH ₃ (C27)	3077	v _a CH ₃ (C20)	3053	v _a CH ₃ (C27)
			3052sh	3049	v _a CH ₃ (C25)	3067	vC21-H43	3051	v _a CH ₃ (C25)
			3047sh	3032	vC17-H38	3058	$v_aCH_3(C27)$	3047	v _a CH ₃ (C20)
	3035s	3041sh	3039m	3007	v _a CH ₃ (C27)	3058	v _a CH ₃ (C20)	3039	v _a CH ₃ (C20)
				3007	v _a CH ₃ (C25)	3056	v _a CH ₃ (C25)	3035	vC17-H38
	2981s	2996sh	2995m	2985	v _a CH ₃ (C20)	3048	vC17-H38	3009	v _a CH ₃ (C25)
				2982	vC10-H30	3033	$v_aCH_2(C14)$	3008	v _a CH ₃ (C27)
	2969sh			2962	v _a CH ₂ (C11)	3010	v _a CH ₃ (C25)	3008	v _a CH ₂ (C14)
2943w	2947sh			2945	v _s CH ₃ (C27)	3010	$v_aCH_3(C27)$	2994	vC10-H30
				2943	v _a CH ₃ (C20)	2988	vC10-H30	2983	v _a CH ₂ (C11)
			2969s	2940	v _s CH ₃ (C25)	2984	$v_aCH_2(C11)$	2963	vC9-H29
			2969s	2940	$v_aCH_2(C14)$	2978	$v_sCH_2(C14)$	2959	v _s CH ₃ (C20)
			2951vs	2939	v _a CH ₂ (C13)	2974	v _s CH ₃ (C20)	2954	v _s CH ₂ (C14)
2924sh	2927vs	2947w	2951vs	2924	vC9-H29	2967	vC9-H29	2951	v _a CH ₂ (C13)
			2951vs	2916	vC16-H37	2952	$v_aCH_2(C13)$	2946	v _s CH ₃ (C27)
	2941sh		2939sh	2914	v _s CH ₂ (C11)	2949	v _s CH ₃ (C27)	2941	v _s CH ₃ (C25)
				2906	v _s CH ₂ (C13)	2944	v _s CH ₃ (C25)	2936	v _s CH ₂ (C11)
					11 cm	2928	v _s CH ₂ (C13)	2923	vC16-H37
		2915sh	2917s			2914	v _s CH ₂ (C11)	2920	v _s CH ₂ (C13)
2889w	2897vs	2867sh	2879s	2891	vC8-H28	2906	vC16-H37	2894	vC8-H28
2826w	2857s			2826	v _s CH ₂ (C14)	2829	vC8-H28		
2808sh	2794s			2819	v _s CH ₃ (C20)				
1775s	1757w	1754s	1773w	1785	vC26-O5	1795	vC26-O5	1787	vC26-O5
1755s	1737m	1733vs	1754s	1756	vC24-O4	1767	vC24-O4	1759	vC24-O4
1751sh	1649m		1674s					1746	vN6-H51
1658w	1624m		1645s	1661	vC17-C19	1658	vC17-C19	1664	vC17-C19
1635w			1645s	1626	vC12-C18	1626	vC12-C18vC21-C23	1626	vC12-C18
		1607w		1606	vC18-C22vC12-C15	1604	vC18-C22vC12-C15	1606	vC18-C22vC12-C15
1499w			1498w	1492	βC23-H44vC22-C23	1497	βС23-Н44	1499	ρ'N6-H51 δN6H51Cl52
					βC21-H43vC15-C21				
1490sh	1 47 4	1484m	1484w	1483	$\delta_a CH_3(C20)$	1 470	S CH (COO)	1494	βC23-H44βC21-H43
1162-1-	14/4m	1460-1-		14/0	oCH ₂ (C14)	14/0	$o_a CH_3(C20)$	1469	0°aCH3(C20)8aCH3(C20)
1402SN		140USN	1/150ab			1402	$0_a \subset \Pi_3(C20)$	1/50	8CH (C14)
1450m			1459811 14510	1451	$\delta CH_2(C20)$	1430	0C112(C14)	1430	$\delta CH_2(C14)$
1752311			14013	1445	$\delta_{a}CH_{2}(C25)$			1445	δ _a CH ₂ (C25)
				1444	δCH ₂ (C11)	1444	δCH ₂ (C11)	1444	vC18-O1
1440ch	1447ch	14390	1435ve	1442	δCH ₂ (C11)	1442	vC18-01	1441	δ _a CH ₂ (C27)δCH ₂ (C14)
1440311	1772311	17575	173343	1774	00112(011)	1774	vC10-01	1-4-4.1	0a0113(027)00112(014)

1440sh	1442sh	1439s	1435vs	1440	$\delta_a CH_3(C27)$	1440	$\delta_a CH_3(C25)$	1440	$\delta_a CH_3(C25)$
		1439s	1435vs			1437	$\delta_a CH_3(C27)$		
1440sh	1442sh	1439s	1435vs	1439	$\delta_a CH_3(C25)$	1435	$\delta_a CH_3(C25)$		
			1435vs	1436	$\delta_a CH_3(C27)$	1434	δCH ₂ (C13)	1438	$\delta_a CH_3(C27)$
1428sh	1423m	1425m	1430sh	1427	δCH ₂ (C13)	1433	$\delta_a CH_3(C27)$	1436	$\delta_a CH_3(C27)$
		1425m	1430sh	1424	δ _s CH ₃ (C20)	1424	ρ'N6-H51	1434	δCH ₂ (C13)
		1425m	1430sh			1418	ρN6-H51	1430	ρN6-H51τN6-H51
	1391w	1403w	1403w	1397	wagCH ₂ (C14)	1404	$\delta_s CH_3(C20)$	1400	$\delta_s CH_3(C20)$
1276				1202	0017 1129-016 010	1202	βС17-Н38 βС19-	1200	βС17-Н38 βС19-
13/0m				1393	pC1/-H38VC10-C19	1392	H39vC16-C19	1390	H39vC16-C19
	1387sh		1376sh			1378	wagCH ₂ (C14)	1388	wagCH ₂ (C14)
1371sh						1367	wagCH ₂ (C11)	1375	wagCH ₂ (C11)
	1367w	1368s		1368	ρС9-Н29	1367	δ _s CH ₃ (C25)vC24-C25	1368	$\delta_s CH_3(C25)$
	1367w	1368s		1367	δ _s CH ₃ (C25)	1364	vC26-C27	1364	рС10-Н30
				1361	δ _s CH ₃ (C27)			1362	wagCH ₂ (C13)
					рС10-Н30		wagCH ₂ (C13)		
1359w		1360sh		1360	wagCH ₂ (C11)	1363	vC13-C15	1361	δ _s CH ₃ (C27)vC26-C27
		1360sh		1358	ρ' C9-H29	1358	рС10-Н30	1356	рС9-Н29
1351sh	1346w		1352m	1352	wagCH ₂ (C13)	1348	рС16-Н37	1348	рС16-Н37рС10-Н30
				1345	рС16-Н37	1346	рС9-Н29	1342	рС8-Н28
	1331sh	1336m	1331m	1334	vC21-C23vC12-C15	1334	рC8-H28 р' C9-H29	1335	vC21-C23
1326w				1329	pC8-H28	1330	vC21-C23	1326	рС16-Н37р'С8-Н28
	1312w	1296w	1309w	1315	р'С16-H37pC16-H37			1313	ρ'C16-H37
	1306sh			1297	ρ'C16-H37ρ'C8-H28	1317	ρ'C10-H30		
					ρCH ₂ (C14)		14		
1291w	1297sh	1296w	1309w	1291	ρCH ₂ (C11)	1298	ρ'C16-H37	1285	ρ'C10-H30
1276w	1277m	1272w	1275m			1277	ρCH ₂ (C11)	1284	ρCH ₂ (C11)
1276w	1277m	1272w	1275m	1272	ρ'С10-Н30	1274	ρ'C8-H28		
1250sh				1256	ρCH ₂ (C11)	1256	ρCH ₂ (C13) vC7-C8	1256	ρCH ₂ (C13) ρ' C9-H29
			1246sh	1244	ρCH ₂ (C13)			1245	vC22-C23vC22-O3
1237vs	1241m	1238vs	1234m	1240	vC24-O28COO(C24)	1249	vC22-O3vC22-C23		
1237vs		1238vs	1234m	1234	vC22-O3			1236	vC24-O2vC24-C25
						1228	$\beta R_3(A3) \beta R_1(A4)$	1232	pCH ₂ (C14)
							vC15-C21 BC21-H43		, - , ,
	1227sh	1224s	1228sh	1226	βR ₃ (A3)	1226	pCH ₂ (C14)	1225	vC13-C15
1216s	1217m	1212s	1211w	1216	$\beta R_1(A4)$	1219	vC24-O2	1209	pCH ₂ (C13)
	1200sh			1202	δCOO(C26)	1204	$\beta R_1(A4)$	1201	vC15-C21
1197s	1181sh	1196s	1189m	1191	$\beta \mathbf{R}_1(\mathbf{A4})$	1198	vC7-C12	1194	vC26-03
1189sh	110130	11705	1105111	1185	вс19-н39	1185	BC19-H39 BC17-H38	1187	BC19-H39BC17-H38
1109511		1175s		1105	persition	1180	δCOO(C26)	1179	$\beta R_1(A4) \rho' CH_2(C20)$
1177w	1172w	11758		1175	oCH ₂ (C13)	1169	o'CH ₂ (C20)		p1()p3()
1162w	1151w	11538	1156w	1153	$\beta R_1(A5)$	1149	vC21-C23	1150	vC21-C23BC23-H44
1152w	1141sh	1142sh	1145w	1145	vC21-C23		,021 020	1142	$BR_{1}(A5) \circ CH_{2}(C20)$
1132w	1130w	1142311	1131w	1131	oCH ₂ (C20)	1133	$oCH_{2}(C20)$	1142	pre[(10) peri3(e20)
1127w	1111m	1127m	1131W	1120	vC7-C8 RR-(A1)	1120	βR.(Δ5)	1123	vC10-C16
1115m	111111	112/11	1110	1120	ver-co pr2(A1)	1104	pr(AJ)	1100	BR.(45) 20H (C20)
1102····	1007-5		1110w	1007	BP (A1) = C7 C11	1104	vC/-C11	1109	$\operatorname{pri}(\mathcal{A}\mathcal{S})\operatorname{pcH}_3(\mathbb{C}\mathcal{Z}\mathcal{O})$
1004	109/50		1005	1097	μκ ₁ (A1)νC/-C11	1004	00 (41)	1000	
1094W	1085sh	1075	1085W	1089	VIND-C20VC/-C10	1094	рк ₁ (А1)	1098	рк ₁ (A1)vC/-СП
10/4w	1068sh	10/5w	1061m	1067	$\tau R_1(A5)$	1065	vC16-O2	1067	vC10-C16vC7-C8

1056m				1057	ρCH ₃ (C25)	1058	$\tau R_1(A3)$	1062	ρCH ₃ (C20)
	1051sh		1055sh	1053	vC16-O2	1056	ρCH ₃ (C25)	1057	ρCH ₃ (C25)
	1048sh	1045s		1049	ρ'CH ₃ (C27)			1050	vC16-O2p'CH ₃ (C25)
				1048	vN6-C14vC8-C9	1049	ρ'CH ₃ (C27)γCOO(C26)	1049	ρ'CH ₃ (C27)
1041m	1042	1025-h	1022	1020	WMG CONCLUCTION	1044	PD (A5) aCU (C20)	1040	vC8-C9vC9-C13
104111	1043W	105580	1032w	1039	vivo-C9p C11 ₃ (C20)	1044	$pR_1(AS) pCH_3(C20)$	1040	vC7-C10
	1028	1017m		1022	NC8 C17	1028	vC8-C9vC7-C10	1019	NK C20, C27
	1028w	101711		1022	vco-c1/	1028	vC9-C13vC8-C17	1018	VIN0-C20VC8-C17
1013w		1017m		1010	ρCH ₃ (C27)			1012	vC11-C14
		1002m				1005	ρCH ₃ (C27)		
1006sh	1006sh	1002m		1003	vC18-O1vC13-C15	1002	ρCH ₃ (C27)	1007	ρCH ₃ (C27) δCOO(C26)
	997w			991	ρ'CH ₃ (C25)	994	ρ'CH ₃ (C25)	997	vN6-C14
989w			982sh			989	γC19-H39vN6-C20	989	ρ'CH ₃ (C25)
980w	972w	974sh	970w	978	δΟ2C16C19	984	τ R ₁ (A1)γC19-H39	980	δO2C16C10
					δΟ2C16C10				
966w	964sh	965m		966	vC11-C14	976	vC11-C14		
962sh			960sh	959	δC14N6C20	955	γC17-H38vC10-O1	962	γC17-H38
945w	951sh					946	γС23-Н44γС21-Н43	952	$\tau R_1(A3)$
	938w		937w	937	vC7-C12vC26-C27	941	γС23-Н44	940	vC7-C12
	931sh	933w		931	$\tau_w CH_2(C14)$			927	γC23-H44
	927sh	920m		924	γC21-H43	922	$\tau_w CH_2(C13)$	921	$\tau_w CH_2(C14)$
910w	909sh	909m	908m	909	$\tau_w CH_2(C13)$	908	vC24-O2	903	$\beta R_3(A3) \tau R_3(A5)$
892sh	899w	891sh	902sh	904	vC10-O1	896	$\tau_w CH_2(C14)$	896	$\tau_w CH_2(C13)$
887w	886w	871m	871m	879	vC26-O3	885	$\tau R_1(A3) \beta R_1(A5)$	878	vC26-O3
871w		871m	871m	867	$\tau R_1(A3)\nu C26-O3$	866	$\beta R_1(A5)$	865	vC26-O38C22O3C26
	860w					859	vC26-O36C22O3C26		
838w	832sh	833m	830w	854	vC9-C13	851	vN6-C14	862	vC10-O1
822sh	815w	814m	817w	826	vC10-C16	827	vC10-C16	827	vC10-C16
819w	805sh	796sh	796w	810	γС19-Н39	809	γС21-Н43	807	γС21-Н43
776w	771sh	780m	774w	782	$\tau_w CH_2(C11)$	774	$\tau R_{I}(A1)$	777	$\tau R_1(A1)$
766w	763sh	767m		769	$\beta R_2(A2)$			767	$\beta R_2(A2)\tau_w CH_2(C11)$
758vw	757m		760sh	756	$\beta R_1(A4)$	761	$\tau_w CH_2(C11)$	760	vN6-C9
750vw	750sh	742w	748sh	740	$\tau R_2(A3) \tau R_1(A4)$	746	$\beta R_2(A2)$	744	$\tau R_2(A3)\tau R_1(A3)$
728w	727sh	723w	728w	720	$\tau R_1(A4)$	730	$\tau R_1(A4)$	726	$\tau R_1(A4)\tau R_2(A2)$
716vw	718sh			716	$\tau R_1(A4)$	711	vN6-C9	715	$\tau R_2(A3) \tau R_1(A4)$
690vw	697vw		690w			707	$\tau R_2(A3) \tau R_1(A4)$		
680w	680sh	688w		680	γC17-H38			681	γC19-H39βR ₂ (A4)
661w	672w	659w				678	$\beta R_2(A4)$		
	652w	649w		651	vC24-C25	648	δCOO(C24)	650	δCOO(C24)
			634sh	638	βR ₃ (A3)	638	βR ₃ (A3)	640	$\beta R_3(A3)\tau R_1(A1)$
	616vs	620w	613vs	621	$\tau R_1(A4)\beta R_3(A3)$	620	$\tau R_1(A4) \beta R_3(A3)$	623	$\tau R_1(A4)\beta R_3(A3)$
	607sh		604sh	605	$\tau R_1(A1)$	604	$\tau R_1(A1)$	605	$\tau R_1(A1)$
	592sh	596w		601	γCOO(C24)	597	γCOO(C24)	601	γCOO(C24)
	578sh	584w		592	γCOO(C26)	591	γCOO(C24) γCOO(C26)	591	γCOO(C26)
	571m	571w	578w	572	γC22-O3	574	$\tau R_2(A4) \gamma C22-O3$	576	γC22-O3
				564	$\tau R_2(A3) \tau R_1(A3)$	563	$\tau R_2(A3)\tau R_1(A3)$	566	$\tau R_2(A3)\tau R_1(A3)$
	549sh	556w	555w	557	$\tau R_3(A4) \tau R_2(A2)$	556	$\tau R_2(A3) \tau R_3(A4)$	559	$\tau R_3(A4)\gamma COO(C26)$

544sh	543sh	540sh	544	$\tau R_2(A4)$	535	$\tau R_3(A4)$	540	$\tau R_3(A4)\tau R_2(A4)$
524m	522w	528sh	522	$\beta R_2(A4)$	518	$\beta R_1(A5)$	520	$\beta R_1(A5)$
	513sh	518m			507	δC9N6C20	516	δC9N6C20
495sh			498	$\beta R_3(A4)$				
485m	493w	483w	490	$\beta R_3(A4)$	496	$\beta R_3(A4) \rho COO(C26)$	496	$\beta R_3(A4)\rho COO(C26)$
	474sh		477	$\beta R_2(A5) \rho COO(C24)$	475	$\beta R_2(A5)\beta R_2(A1)$	479	$\beta R_2(A5)\beta R_2(A1)$
460w	466w	456w	453	βR ₃ (A1)	444	$\beta R_3(A1)$	451	$\beta R_3(A1)$
449sh	444w	435m	439	$\beta R_3(A3)$	436	βR ₃ (A3)	441	$\beta R_3(A3)$
431m	420w	410w	406	$\beta R_3(A5)$	407	pCOO(C24)	417	$\tau R_1(A1) \rho COO(C24)$
401w	413sh	394w	392	$\beta R_2(A3)$	391	$\beta R_3(A5)\beta R_2(A3)$	401	$\beta R_3(A5)\beta R_2(A3)$
364sh		365w	357	$\tau R_2(A3)$	356	$\tau R_2(A3)\tau R_1(A3)$	360	$\tau R_1(A3)\tau R_2(A3)$
342w		342m	342	βN6-C20 ρCOO(C26)	340	δC14N6C20	350	δC14N6C20
324w		334sh	336	$\tau R_1(A3) \tau R_2(A3)$	330	$\tau R_1(A3)\beta R_2(A5)$	336	$\tau R_1(A3)\tau R_2(A3)$
315sh		318w	320	$\tau R_1(A1) \tau R_3(A1)$	326	$\tau R_1(A1) \tau R_3(A1)$	324	$\tau R_3(A1) \delta O2C16C19$
305w		303sh	301	$\tau R_1(A5)$	310	$\tau R_1(A3) \tau R_1(A1)$	313	$\tau R_1(A3) \tau R_1(A1)$
283w		280sh	285	$\tau R_3(A5) \tau R_2(A5)$	283	$\tau R_3(A5)\tau R_2(A5)$	287	$\tau R_2(A5)$
276sh		272m	275	βC22-O3	271	βC22-O3	277	βC22-O3
261sh		264sh	259	$\tau R_3(A5)$	260	$\tau R_1(A3) \tau R_3(A3)$	265	$\tau R_3(A3)$
254m		249m			256	$\tau R_1(A5)$	257	$\tau R_3(A5)\tau R_1(A5)$
237m		235m	241	τR ₃ (A3) γC22-O3				
227sh		223sh	219	$\tau_w CH_3(C20)\tau R_2(A5)$			224	vH51-Cl52
			214	$\tau R_1(A3) \tau R_3(A5)$	216	δO2C16C10	207	δC16O2C24
200sh		204sh	203	$\tau R_1(A3) \beta R_3(A3)$	204	δC16O2C24	204	vH51-Cl52tR1(A3)
196sh		194w		1.4	194	$\tau_w CH_3(C20)$	184	τ _w CH ₃ (C20)
166s		170s	165	$\tau R_1(A3)$	164	$\tau R_1(A3)$	162	$\tau R_1(A3)$
158sh		161sh	158	δC16O2C24	156	τR ₃ (A5)	155	$\tau R_3(A5)\tau R_1(A3)$
140s		142w	133	$\tau R_1(A2) \delta C22O3C26$	128	$\tau R_1(A2)$	137	$\tau R_1(A2)$
116s		114sh	109	$\tau R_2(A3) \tau R_3(A5)$	109	$\tau R_2(A3) \tau R_2(A5)$	113	$\tau R_2(A3)$
100s		107vs	100	τ _w CH ₃ (C25)			99	τ _w CH ₃ (C25)
92sh		91sh			94	τ _w CH ₃ (C25)	90	τ _w CH ₃ (C27)
87sh		84sh	84	$\tau R_1(A3) \tau R_3(A3)$	86	τ _w CH ₃ (C27)	85	$\tau R_1(A3) \tau R_3(A3)$
			83	$\tau R_1(A3) \tau R_2(A3)$	83	τR ₃ (A3)		
			74	τΟ2-C24	75	τΟ2-C24δΟ2C16C19	74	τΟ2-C24
					62	τ _w CH ₃ (C27) τO3-C22	63	$\tau_w CH_3(C27)\tau R_1(A1)$
			60	τ _w CH ₃ (C27)			60	$\tau R_1(A1)\tau R_1(A3)$
			50	τO3-C2	53	τO3-C2	52	τΟ3-C2
							44	$\tau O3-C2\tau R_1(A3)$
			38	τΟ3-C22	37	τO3-C22	35	τ _w COO(C24)
			29	τ _w COO(C24)	33	τ _w COO(C24)	31	τO3-C22
			19	$\tau R_2(A1)$	16	$\tau R_2(A1)$	16	$\tau R_2(A1)$
					~		-	

Abbreviations: br, broad; v, stretching; β , deformation in the plane; γ , deformation out of plane; wag, wagging; τ , torsion; β_R , deformation ring τ_R , torsion ring; ρ , rocking; τw , twisting; δ , deformation; a, antisymmetric; s, symmetric; (A₁), Ring1; (A₂), Ring2; (A₃), Ring3; (A₄), Ring4; (A₅), Ring5.

^aThis work, ^bFrom scaled quantum mechanics force field; ^cFrom Ref [18]; ^dFrom Ref [18]

Bands Assignments

3500-2000 cm⁻¹ region. In this region are expected the N-H stretching modes only for the cationic heroin species, the aromatic and aliphatic C-H stretching modes and the antisymmetric and symmetric stretching modes of CH_2 and CH_3 groups for the three species. In clonidine hydrochloride the N-H stretching modes for cationic and hydrochloride forms were assigned at 3427 and 1711 cm⁻¹ [48], in tropane alkaloid at 3419 cm⁻¹ and 1626 cm⁻¹ [12], in cocaine are assigned at 2982/2981 and 2545 cm⁻¹ [13] while in morphine at 3356, and 1855 cm⁻¹ [11]. In heroin, these modes are assigned to 3483 and 1674 cm⁻¹. In heroin species, the aromatic C-H stretching modes are assigned at higher wavenumbers than the aliphatic ones, as reported in morphine [11].

In the three heroin species, the antisymmetric and symmetric CH_3 modes are predicted by SQM calculations between 3077 and 2819 cm⁻¹ and, for this reason, they are assigned to the IR and Raman bands located between 3052 and 2808 cm⁻¹, as in morphine (3206/2865 cm⁻¹), cocaine (3056/2845 cm⁻¹) and tropane alkaloids (3098/2966 cm⁻¹) [11-13]. On the other hand, in cocaine, the antisymmetric and symmetric CH_2 modes are predicted at 3009/2938 cm⁻¹ [11], in tropane species at 3024/2911 cm⁻¹ [30] while in morphine at 3036/2821 cm⁻¹. Hence, the bands between 3033 and 2906 cm⁻¹ are easily assigned to these modes of heroin species, as predicted by calculations. Here, the intense IR band observed in the spectrum of free base at 2794 cm⁻¹ and at 2455 cm⁻¹ with medium intensity in the Raman spectrum of the hydrochloride form could be attributed to dimeric species not considered here. Obviously, the symmetrical modes are associated to the most intense Raman bands.

2000-1000 cm⁻¹ region. Here, the C=O, C=C and C-O stretching modes, the N-H stretching mode for the hydrochloride species, antisymmetric and symmetric CH₃ deformation modes, CH₂ deformation modes, C-H, CH₂ and CH₃ rocking modes and CH₂ wagging modes are predicted by B3LYP/6-31G* calculations of those three heroin species. The assignments of all these modes can be seen in Table 9. The strong IR bands at 1754 and 1733 cm⁻¹ in the spectrum of hydrochloride form are assigned respectively to the two C26=O5 and C24=O4 stretching modes while the intense Raman band at 1674 cm⁻¹ is assigned to the N-H stretching mode for the hydrochloride species, as was explained in the above section. The intense Raman band at 1645 cm⁻¹ is simultaneously assigned to two C17=C19 and C12=C18 stretching modes predicted in the same regions for the three heroin species. Note that the strong IR and Raman bands at 1439 and 1435 cm⁻¹, respectively can be indistinctly assigned

to C8-O1 stretching modes and to CH₃ and CH₂ deformation modes because the calculations have predicted some of these modes in this region. In this region, results few commons were obtained, for instance, the two deformation modes of acetyl group, identified in the three heroin species as δ COO(C26) and (δ COO(C24), are predicted by SQM calculations between 1240 and 1007 cm⁻¹ when normally these modes are assigned between 800 and 600 cm⁻¹ [28,49-51], including in cocaine [13]. Evidently, these groups in the three heroin species are strongly influenced by the different five fused rings, especially the δ COO(C26) group linked to aromatic R4 ring in the three species. Apparently, in the heroin species the two acetyl groups do not present movements free as in the cocaine species and, for these reasons, in the following section, the force constants were also calculated in order to explain these differences. Other unusual obtained result was observed in the expected deformations ring modes of R1, R3, R4 and R5 rings because these modes are normally predicted and assigned below 1000 cm⁻¹ [25,27,29, 31,32] and, here, in the three heroin species some of these modes (β R₁ and β R₃) are predicted from 1228 cm⁻¹, as observed in Table 9.

2000-1000 cm⁻¹ region. In this region are expected the vibration modes of acetyl groups (wagging, γ COO; rocking, ρ COO and twisting, τ_w COO modes), deformation (β R₁, β R₂ and β R₃) and torsion (τ R₁, τ R₂ and τ R₃) rings of five rings and, other skeletal vibrations (C-C and C-O stretching modes, OCC, CNC, COC, OCO deformations and, CH₃ and CH₂ twisting modes. Here, it is necessary to clarify the only for the R2 ring of five members is expected two deformations and two torsions rings. All these modes were assigned in accordance to the SQM calculations and, as detailed in Table 9.

Here, the identifications of N6-CH₃ stretching modes (N6-C20) in the three heroin species are of interest because they play a very important role in the pharmacological and medicinal properties of all tropane alkaloids and, for these reasons, they are here analyzed. In the three tropane species these modes were assigned at 1128, 1086 and 1031 cm⁻¹, in the cocaine species at 1113, 1058 and 1052 cm⁻¹ and, in the free base of morphine at 1160 cm⁻¹, in the cationic form at 984 cm⁻¹ and in the hydrochloride form of this species at 1047 cm⁻¹. Here, in the free base, cationic and hydrochloride forms of heroin that mode is assigned to the bands at 1094, 989 and 1017 cm⁻¹, respectively, in accordance to the calculations.

Force constants

For the three heroin species in both media were computed the harmonic force constants from their corresponding harmonic force fields obtained at B3LYP/6-31G* level of theory by using the SQMFF procedure [16] and the Molvib program [17]. The scaled internal force constants are presented in **Table 10** compared with those reported for morphine, cocaine and tropane alkaloids in both media [11-13]. Analyzing first the force constants for the three heroin species, it is observed that the presence of Cl atom in the hydrochloride species drastically reduce the force constant f(vN-H) values in both media, observing for the hydrochloride form a low value in gas phase. When this constant is compared with the other alkaloids cocaine present the higher values in both media. Comparing then the $f(vN-CH_3)$ force constants, the cationic forms of all alkaloids in both media have the lower values than the other ones probably due to the presence of N-H groups positively charged and, hence, the values slightly increase in solution.

Table 10. Scaled internal force constants for the free base, cationic and hydrochloride heroin species compared with the corresponding to morphine, cocaine and tropane species in gas and aqueous solution phases.

B3LYP/6-31G*											
Heroin ^a											
Fores constant	Free	base	Cat	ionic	Hydrochloride						
Force constant	Gas	PCM	Gas	PCM	Gas	PCM					
f(vN-H)			5.93	5.93	2.67	4.54					
$f(vN-CH_3)$	4.83	4.67	4.04	4.09	4.38	4.26					
f(vC=O)	12.50	11.62	12.67	11.62	12.55	11.65					
f(vC-O)	5.07	5.06	4.39	5.04	5.05	5.05					
$f(\nu C-O)_R$	5.23	4.92	5.30	4.98	5.27	4.91					
$f(\nu C-N)$	4.88	4.77	3.76	4.01	4.30	4.17					
$f(\nu CH_2)$	4.69	4.73	4.84	4.89	4.83	4.89					
$f(\nu CH_3)$	4.88	4.91	5.01	4.98	4.98	5.02					
$f(\nu C-H)_R$	5.14	5.16	5.18	5.17	5.15	5.18					
f(vC-H)	4.72	4.81	4.71	4.84	4.77	4.85					
$f(\nu C-C)$	4.18	4.33	4.24	4.33	4.19	4.33					
$f(\delta COO)$	1.36	1.39	1.38	1.37	1.37	1.37					
$f(\delta CH_2)$	0.74	0.72	0.73	0.72	0.73	0.72					

$f(\delta CH_3)$	0.57	0.56	0.55	0.56	0.55	0.54	
		Morp	hine ^b				
Force constant	Free	base	Cat	tionic	Hydrod	chloride	
i oree consum	Gas	PCM	Gas	PCM	Gas	PCM	
f(vO-H)	7.12	7.13	7.21	7.13	7.13	7.05	
$f(\nu N-H)$			5.93	5.98	2.73	4.61	
$f(vN-CH_3)$	4.83	4.69	4.05	4.15	4.37	4.25	
$f(\nu C-N)$	4.74	4.59	3.67	3.91	4.20	4.03	
$f(\nu CH_2)$	4.69	4.72	4.85	4.90	4.82	4.89	
$f(\nu CH_3)$	4.70	4.76	5.08	5.12	5.01	5.09	
$f(\nu C-H)$	4.65	4.71	4.62	4.77	4.72	4.79	
$f(\nu C-C)$	5.74	5.73	6.04	5.77	5.79	5.78	
$f(\delta CH_2)$	0.74	0.73	0.73	0.72	0.73	0.72	
$f(\delta CH_3)$	0.58	0.57	0.56	0.56	0.56	0.56	
		Coca	line ^c				
Force constant	Free	base	Cat	tionic	Hydrod	hloride	
	Gas	PCM	Gas	PCM	Gas	PCM	
f(vN-H)			4.91	5.55	3.23	4.79	
$f(vN-CH_3)$	4.69	4.52	4.17	4.23	4.31	4.17	
$f(\nu C-N)$	4.20	4.01	3.41	3.51	3.71	3.54	
$f(\nu CH_2)$	4.85	4.87	4.91	4.93	4.88	4.93	
$f(\nu CH_3)$	4.86	4.92	5.07	5.09	5.04	5.08	
$f(\nu C-H)$	4.86	4.91	4.93	5.02	4.91	4.98	
$f(\nu C-C)$	3.94	3.98	4.06	4.09	4.08	4.11	
$f(\delta COO)$	1.46	1.43	1.52	1.45	1.49	1.45	
$f(\delta CH_2)$	0.74	0.72	0.75	0.73	0.75	0.73	
$f(\delta CH_3)$	0.58	0.56	0.57	0.56	0.57	0.56	
		Trop	ane ^d				
Force constant	Free	base	Cat	tionic	Hydrochloride		
	Gas	PCM	Gas	PCM	Gas	PCM	
f(vN-H)			5.97	5.98	2.70	4.69	
$f(vN-CH_3)$	4.69	4.52	4.09	4.21	4.42	4.26	
$f(\nu C-N)$	4.16	3.97	3.11	3.35	3.73	3.48	
$f(vCH_2)$	4.78	4.78	4.88	4.88	4.85	4.87	
$f(vCH_3)$	4.72	4.79	5.10	5.13	5.03	5.11	
$f(\nu C-H)$	4.78	4.82	4.92	4.99	4.90	4.96	
$f(\nu C-C)$	4.05	4.06	4.17	4.21	4.16	4.20	
$f(\delta CH_2)$	0.74	0.72	0.75	0.72	0.74	0.73	

$f(\delta CH_3)$	0.58	0.57	0.56	0.56	0.56	0.56

Units are mdyn Å⁻¹ for stretching and mdyn Å rad⁻² for angle deformations

^aThis work; ^bFrom Ref [11]; ^cFrom Ref [13]; ^dFrom Ref [12]

The $f(\nu C=O)$ constants values corresponding to the acetyl groups change in solution, as expected because these groups are probably hydrated in solution while the $f(\nu C-O)_R$ constants corresponding to the C-O bonds of R2 rings practically do not change in the three species but in solution slight decreasing are observed in the different forms. The other $f(\nu C-O)$ constants practically present the same values. Here, the assignments of deformation modes of acetyl groups (δ COO) to higher wavenumbers than those reported values for other compounds with similar groups [28,49-51] could be justified by the higher values observed in the $f(\delta COO)$ force constants, for example, in relation to the cocaine value. The other force constants observed in Table 10 present practically the same behaviors in both media.

CONCLUSIONS

Here, the structures of the free base, cationic and hydrochloride heroin species were theoretically determined in gas phase and in aqueous solution employing the hybrid B3LYP/6-31G* method. The solvent effects were studied by using the SCRF and PCM methods while the solvation energies were predicted with the solvation model. The three species in both media were optimized with N-CH₃ groups in equatorial positions which apparently favour the volume expansions in solution. The three Heroin species presents the higher solvation energy values, as compared with the corresponding to morphine and cocaine. The charges studies and the MEP mapped surfaces suggest clear electrophilic sites on the N-H group of the cationic species while the hydrochloride species shows nucleophilic regions around the Cl atoms but less weak sites on the C=O groups. The low BO values for the Cl atoms in the hydrochloride species in both media reveal the ionic characteristics of their halogen H---Cl bonds. The NBO and AIM studies support the high stabilities of those three heroin species against to the corresponding to morphine and cocaine. Here, the presence of other groups linked to tropane ring increase significantly the reactivity of alkaloid, specifically of its cationic and hydrochloride forms. The predicted higher global electrophilicity index (ω) for hydrochloride form of cocaine and the low global nucleophilicity index (E) values in heroin and morphine could probably explain the different

behaviors of these species in both media. In this work, the broadly known potential pharmacological properties for the three heroin species were explained easily with the rule of five states suggested by Lipinski's and Veber. The harmonic force fields and the complete vibrational assignments of the 144, 147 and 150 normal vibration modes expected respectively for the free base, cationic and hydrochloride heroin species were here reported for first time by using the SQMFF methodology.

ACKNOWLEDGEMENTS.

This work was supported with grants from CIUNT Project N° 51/D608 (Consejo de Investigaciones, Universidad Nacional de Tucumán). The author would like to thank Prof. Tom Sundius for his permission to use MOLVIB.

REFERENCES

[1] Busse GD, Drugs, The Straight Facts, Morphine, Consulting Editor David J. Triggle, Chelsea House Publishers, New Cork (2006).

[2] Rinner U, Hudlicky T, Synthesis of Morphine Alkaloids and Derivatives, Top Curr Chem 2012; 309: 33–66.

[3] Pandey AK, Dwivedi A, Siddiqui SA, Misra N, Vibrational Spectra of Two Narcotics. A DFT Study, Chinese J. of Physics 2013; 51(3): 473-499.

[4] Sweta VR, Lakshmi, T. Pharmacological profile of tropane alkaloids, Journal of Chemical and Pharmaceutical Research, 2015; 7(5): 117-119.

[5] Penido, CA, Pacheco MT, Zângaro RA, Silveira L Jr, Identification of different forms of cocaine and substances used in adulteration using near-infrared Raman spectroscopy and infrared absorption spectroscopy, J Forensic Sci. 2015; 60(1): 171-178.

[6] Singh Bumbrah G, Sharma RM, Raman spectroscopy-Basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egyptian J. Forensic Sci. 2016; 6: 209-215.

[7] Guha, P.; Harraz, M.M.; Snyder, S.H., Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade, PNAS, 2016; 113(5): 1417-1422.

[8] Fernandes de Oliveira Penido CA, Tavares Pacheco MT, Lednev IK, Silveira Jr L, Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse, J. Raman Spectrosc. 2016; 47: 28–38.

[9] Moros J, Galipienso N, Vilches R, Garrigues S, de la Guardia M, Nondestructive Direct Determination of Heroin in Seized Illicit Street Drugs by Diffuse Reflectance near-Infrared Spectroscopy, Anal. Chem. 2008; 80: 7257–7265.

[10] Hodges CM, Hendra PJ, Willis HA, Farley T, Fourier transform Raman spectroscopy of illicit drugs, J Raman Spectroscopy, 1989; 20(11): 745-749.

[11] Brandán SA, Why morphine is a molecule chemically powerful. Their comparison with cocaine, Indian Journal of Applied Research, 2017; 7(7): 511-528.

[12] Rudyk RA, Brandán SA, Force field, internal coordinates and vibrational study of alkaloid tropane hydrochloride by using their infrared spectrum and DFT calculations, Paripex A Indian Journal of Research, 2017; 6(8): 616-623.

[13] Romani D, Brandán SA, Vibrational analyses of alkaloid cocaine as free base, cationic and hydrochloride species based on their internal coordinates and force fields, Paripex A Indian Journal of Research, 2017; 6(9): 587-602.

[14] Horváth E., Mink J., Kristóf J. Surface-enhanced Raman Spectroscopy as a Technique for Drug Analysis. In: Mink J., Keresztury G., Kellner R. (eds) Progress in Fourier Transform Spectroscopy. Mikrochimica Acta Supplement, vol 14. Springer, Vienna (1997).

[15] Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene, J. Am. Chem. Soc. 1983; 105: 7073.

[16] Rauhut G, Pulay P, Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields, J. Phys. Chem. 1995; 99: 3093-3100. b) *Correction:* G. Rauhut, P. Pulay, J. Phys. Chem. 1995; 99: 14572.

[17] Sundius T. Scaling of ab-initio force fields by MOLVIB. Vib. Spectrosc. 2002; 29:89-95.

[18] Available from: file:///C:/Users/Usuario/Downloads/HEROIN.pdf.

[19] Canfield D, Barrick J, Giessen BC, Structure of Diacetylmorphine (Heroin) Acta Cryst. 1979; B35: 2806-2809.

[20] Deschamps JR, George C, Flippen-Anderson JL, A Diacetylmorphine Polymorph Acta Cryst. 1996; C52: 698-700.

[21] Becke AD. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993; 98:5648-5652.

[22] Lee C, Yang W, Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988; B37: 785-789.

[23] Parr RG, Pearson RG. Absolute Hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983; 105:7512-7516.

[24] Brédas J-L. Mind the gap!. Materials Horizons 2014; 1:17–19.

[25] Romani D, Márquez MJ, Márquez MB, Brandán SA. Structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities. J. Mol. Struct. 2015; 1100:279-289.

[26] Romani D, Tsuchiya S, Yotsu-Yamashita M, Brandán SA, Spectroscopic and structural investigation on intermediates species structurally associated to the tricyclic bisguanidine compound and to the toxic agent, saxitoxin, J. Mol. Struct. 2016; 1119: 25-38.

[27] Chain F, Iramain MA, Grau A, Catalán CAN, Brandán SA, Evaluation of the structural, electronic, topological and vibrational properties of *N*-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (*Lepidium meyenii*) using different spectroscopic techniques, J. Mol. Struct. 2016; 1119: 25-38.

[28] Issaoui N, Ghalla H, Brandán SA, Bardak F, Flakus HT, Atac A, Oujia B, Experimental FTIR and FT-Raman and theoretical studies on the molecular structures of monomer and dimer of 3-thiopheneacrylic acid, J. Mol. Struct. 2017; 1135: 209-221.

[29] Chain FE, Ladetto MF, Grau A, Catalán CAN, Brandán SA, Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (*Lepidium meyenii*) combining spectroscopic studies with ONION calculations, J. Mol. Struct. 2016; 1105: 403-414.

[30] Minteguiaga M, Dellacassa E, Iramain MA, Catalán CAN, Brandán SA, Synthesis, Spectroscopic characterization and structural study of carquejiphenol, a 2-Isopropenyl-3-methylphenol derivative with potential medicinal uses, J. Mol. Struct. 2018; 1165: 332-343.

[31] Iramain MA, Davies L, Brandán SA, FTIR, FT-Raman and UV-visible spectra of Potassium 3-furoyltrifluoroborate salt, J. Mol. Struct. 2018; 1158: 245-254.

[32] Iramain MA, Davies L, Brandán SA, Evaluating structures, properties and vibrational and electronic spectra of the Potassium 2-isonicotinoyl trifluoroborate salt, J. Mol. Struct. 2018; 1163: 41-53.

[33] Edrik J, Bautista K, Merhi B, Gregory O, Hu S, Henriksen K, Gohh R, Heroin crystal nephropathy, Clinical Kidney Journal, 2015; 8(3): 339–342.

[34] Nielsen AB, Holder AJ. 2008. Gauss View 5.0, User's Reference, GAUSSIAN Inc., Pittsburgh, PA.

[35] Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,

R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[36] Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. Chem. Phys. 1981; 55:117–129.

[37] Tomasi J, Persico J. Molecular Interactions in Solution: An Overview of Methods Based on Continous Distributions of the Solvent. Chem. Rev. 1994; 94:2027-2094.

[38] Marenich AV, Cramer CJ, Truhlar D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. 2009; B113:6378-6396.

[39] Ugliengo P. MOLDRAW Program, University of Torino, Dipartimento Chimica IFM, Torino, Italy, 1998.

[40] Glendening ED, Badenhoop JK, Reed AD, Carpenter JE, Weinhold F. 1996. NBO 3.1; Theoretical Chemistry Institute, University of Wisconsin; Madison.

[41] Besler BH, Merz Jr KM, Kollman PA, Atomic charges derived from demiempirical methods, J. Comp. Chem. 1990; 11: 431-439.

[42] Biegler-Köning F, Schönbohm J, Bayles DJ. AIM2000; a program to analyze and visualize atoms in molecules. Comput. Chem. 2001; 22:545-559.

[43] Bader RFW. Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford, ISBN: 0198558651; 1990.

[44] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv Drug Deliv Rev 2001; 46(1-3): 3-26.

[45] Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD, Molecular properties that influence the oral bioavailability of drug candidates, J Med Chem. 2002; 45(12): 2615-23.

[46] Keresztury G, Holly S, Besenyei G, Varga J, Wang AY, Durig JR, Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of **S**-methyl-N,N-dimethylthiocarbamate, Spectrochim. Acta, 1993; 49A: 2007-2026.

[47] Michalska D, Wysokinski R, The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory, Chem. Phys Letters, 2005; 403: 211-217.

[48] Romano E, Davies L, Brandán SA, Structural properties and FTIR-Raman spectra of the anti-hypertensive clonidine hydrochloride agent and their dimeric species, J. Mol. Struct. 2017; 1133: 226-235.

[49] Chain F, Romano E, Leyton P, Paipa C, Catalan CAN, Fortuna MA, Brandan SA, An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV–visible and NMR spectroscopies, J. Mol Struct. 2014; 1065-1066: 160–169.

[50] Guzzetti KA, Brizuela AB, Romano E, Brandán SA, Structural and vibrational study on zwitterions of L-threonine in aqueous phase using the FT-Raman and SCRF calculations J. Mol. Struct. 2013; 1045: 171–179.

[51] Romano E, Castillo MV, Pergomet J, Zinczuk J, Brandán SA, Synthesis and structural and vibrational analysis of (5,7-dichloro-quinolin-8-yloxy) acetic acid J. Mol. Struct. 2012; 1018: 149–155.