

Human Journals Research Article

November 2017 Vol.:8, Issue:1 © All rights are reserved by Silvia Antonia Brandán et al.

Spectroscopic and Structural Study of the Antiviral Idoxuridine Agent by Using DFT and SCRF Calculations

Davide Romani^a, Silvia Antonia Brandán^b*

A SST, Servicio sanitario della Toscana, Azienda USL 9 di Grosseto, Via Cimabue, 109, 58100 Grosseto, Italia.

B Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471,(4000), San Miguel de Tucumán, Tucumán, R, Argentina.

Submission:	19 October 2017
Accepted:	29 October 2017
Published:	30 November 2017

www.ijsrm.humanjournals.com

Keywords: Idoxuridine, vibrational spectra, molecular structure, force field, DFT calculations.

ABSTRACT

In the present work, the theoretical molecular structures of five isomers of idoxuridine have been studied by using the hybrid B3LYP method with the Lanl2dz and 3-21G* levels of theory in gas and aqueous solution phases. The properties in solution were predicted by using the self-consistent reaction field (SCRF) method together with the integral equation formalism variant polarised continuum model (IEFPCM). Here, the structural properties and spectroscopic were performed only for the C4 and C5 isomers according to the experimental anti-structure reported for idoxuridine. On the other hand, the infrared, Raman, ¹H-NMR, ¹³C-NMR and UV-visible spectra predicted for the two most stable isomers by using the 3-21G* basis set in the two studied media show a reasonable agreement with the corresponding available experimental spectra. The presence of the dimeric species of idoxuridine could explain some bands observed in the experimental FTIR spectrum. The atomic Mulliken, natural population (NPA) charges, solvation energies and the NBO and AIM studies evidence clearly the notable influence of the basis set on the properties analyzed. Hence, the antiviral activity observed for IDU could in part be justified using the 3-21G* basis set because these calculations show slightly polarizations of the C16←I1 bonds and electrons available in the *d* orbitals of the iodine atom. The frontier orbitals show that the presence of the iodine atom in idoxuridine increases their reactivity as compared with thymidine while idoxuridine is less reactive than brincidofovir, an antiviral drug used against the Ebola disease.

1. INTRODUCTION

From long time the pyrimidine nucleoside analogs and their derivatives are used as antiviral agents in the clinical treatment of numerous diseases, as reported in the literature [1-16] and, due to that they present a series of contraindications or side effects, new drugs were and are designed in order to improve their biological properties [1-6,9-16]. For instance, the structural changes implies the introduction of different atoms or groups in the pyrimidine or ribose rings to produce new drugs of therapeutic interest such as, halogen and/or sulphur atoms giving idoxuridine and trifluridine which are used respectively in the treatment of herpes simplex virus (HSV) and/or varicella-zoster virus (VZV) infections or emtricitabine used for the treatment of human immunodeficiency virus (HIV) infections [6]. The evaluations of some cytidine derivatives and of amino and halogenated pyrimidine analogs as potential antimicrobial agents were studied by Azhar et al. [4] and Sreenivas et al. [9], respectively while others authors have reported that the pyrimidine derivatives also exhibit the anti-inflammatory, anticancer, anticonvulsant, antibacterial, antioxidant and antifungal properties [1-5,9]. In particular, the nucleoside idoxuridine (IDU), is an analog of thymidine because the CH₃ group was replaced by an iodine atom, whose IUPAC name is 1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodo-1,2,3,4-tetrahydropyrimidine-2,4-dione. For the first time, Prusosif synthesized IDU and their biological activities reported in this opportunity [17]. The detailed crystal and molecular structure of IDU were determined by Camerman and Trotter [18] by using X-ray diffraction and a Mo $K\alpha$ scintillation counter data. These authors have suggested that a probable explanation for the antiviral property of IDU could be the existence of charge transfer bonding involving the donation of oxygen lonepairs electrons to vacant 5d orbitals of the iodine atom. They say that, the replacement of CH₃ by iodine atom increase the stability of IDU, in relation to thymidine [19], because in part modify the electronic density of the pyrimidine ring in order to strengthen the hydrogen bonding to the purine base in the complementary DNA chain [18]. This way, the structural properties of IDU are of interest to know and understand these experimental observations especially due to the presence of two chiral C atoms and to explain the changes observed when the pyrimidine environmental is modified, in relation to their very important antiviral activity. On the other hand, the structural studies are also necessary to identify the isomers of IDU in different media using their infrared, Raman, NMR and/or UV-visible spectra. In this context, the aims of this work are: (i) to study theoretically the stable isomeric structures of IDU in gas and aqueous solution phases by using the hybrid B3LYP method [20,21] and the

polarized continuum (PCM) [22,23] and solvation (SM) models [24], (ii) to predict the infrared, Raman, NMR and UV-visible spectra and, then, to compare these with the corresponding experimental available ones, (iii) to calculate the atomic charges, bond orders, molecular electrostatic potentials, stabilization energy, topological properties and solvation energy, (iv) to predict the reactivity and behaviour's of the different structures in the two media using the frontier orbitals and some descriptors reported in the literature [19,25-31] and, finally, (v) to perform the complete vibrational assignments combining the experimental available infrared spectra with the scaled harmonic quantum mechanical force field (SQMFF) methodology [32] and taking into account their natural internal coordinates. Here, the suggestions proposed by Camerman and Trotter [18] were confirmed by using natural bond orbital (NBO) [33, 34] and atoms in molecules (AIM) [35, 36] calculations and, moreover, new structural information is obtained with the aid of the theoretical calculations and the experimental available infrared, NMR and UV-visible spectra of IDU. The reactivity's and descriptors for all the isomers of IDU in both media were compared with the corresponding values obtained for thymidine [19] revealing that the presence of the iodine atom increase notably their reactivity's in both media, as proposed by Camerman and Trotter [18] while the NBO studies support the higher stability of IDU due to the higher number of charge transfers observed.

2. METHODOLOGY

In this work, we have considered five isomeric structures of IDU because this molecule has two chiral centres in the 2 and 5 positions of the ribose ring which are: the *cis* isomer (2R,5S) named C1; the *trans* isomer (2S,5S), named C2; the *cis* isomer (2S,5R) named C3; and the two *trans* isomers (2R,5R) named C4 and C5, respectively in similar form to those structures reported for emtricitabine by Bartra Sanmarti et al. [37]. The study of these structures are of interest for classify their properties taking into account that the *cis* (2R, 5S) isomer of emtricitabine has significant antiviral activity while low activities are observed in the other *cis* (2S,5R) isomer and in the two *trans* isomers (2S,5S) and (2R,5R), for which, these three latter forms have low therapeutic interest. The five structures of IDU can be seen in Figure 1 together with the labelling atoms. Here, in accordance to the packing of the IDU molecules observed by X-ray diffraction [18], two different dimeric species were also studied in order to explain the intensities of some infrared bands that cannot be justified with the monomeric species. Thus, Figure S1 shows the most stable dimeric species studied. Those five initial

structures were modelled with the *GaussView* program [38] and, later these species in both media were optimized using the Gaussian 09 program [39]. All the calculations were performed by using the hybrid B3LYP method [20,21] and the CEP-4G [40], Lanl2dz [41] and 3-21G* [42] basis sets because for the iodine atom there are few basis sets defined. Here, only the calculated properties using those two latter basis sets were considered because the energies obtained using the CEP-4G basis set were considerably lower than the other ones. Thus, the atomic natural population (NPA) and Mulliken's charges together with the bond order expressed as Wiberg indexes were analysed in both media. The stabilization energies and the topological properties were computed with the NBO [33, 34] and AIM2000 programs [35, 36] while the gap energies and some descriptors were calculated by using the frontier orbitals [19,25-31]. The harmonic force fields in both media at the Lanl2dz and 3-21G* levels of theory were obtained using the harmonic scaled quantum mechanical force field (SQMFF) procedure [32], the internal coordinates and the Molvib program [43]. The Moldraw program [44] was employed to calculate the volume variations that experiment the isomers in aqueous solution in relation to their values in the gas phase. The GIAO method [45] was used to predict the ¹H-NMR and ¹³C-NMR spectra in aqueous solution while the ultraviolet-visible spectra for all the isomers in the same medium were predicted in solution by using the time-dependent density functional theory (TD-DFT) calculations at the same level of theory.

3. RESULTS AND DISCUSSION

3.1. Optimized structures in both media

Table S1 shows the total and relative energies and dipole moment values for the five configurations of Idoxuridine by using the Lanl2dz and 3-21G* basis sets together with the population analysis in the two studied media. Analysing exhaustively the results we observed that the C5 isomer is the most stable in the gas phase with both basis sets but C4 is the most stable in solution by using Lanl2dz basis set while C5 is the most stable in this medium using the 3-21G* basis set, this way, these two isomers can probably be present in both media due to their higher populations, as can be seen in Table S1. The structure of the C4 isomer is in agreement with the *anti*-conformation experimentally reported for IDU by Camerman and Trotter [18] with an O2-C10-N7-C14 dihedral angle of -67°, as will see later. When these relative energies using both basis sets are represented in function of the five configurations we observed clearly different behaviours in both media, as can be seen in Figures S2a and 2b,

thus, C5 is the most stable isomer in both media using 3-21G* basis set while C4 is the most stable one in solution using the other basis set. Figures S2c and 2d show clearly that the higher changes in the dipole moment values are observed using the 3-21G* basis set while the graphic of the volume values with the five configurations show that C2 present the higher values in both media using both basis sets and that C3, C4 and C5 have different behaviours in the two media by using both basis sets. Thus, Figure S2 evidence the notable influence of the basis set on the three properties analysed.

It is very important to clarify that the C2, C4 or C5 structures correspond to *Trans* isomers while those corresponding to the C1 and C3 isomers have Cis conformations. In this analysis, we have considered only the trans C5 isomer in accordance with the better correlations with the experimental anti-structure [18], their high populations and low energies using the 3-21G* basis set. The calculated geometrical parameters for the C5 isomer in the two studied media by using both basis sets were compared in Table 1 with the corresponding experimental ones [18] by using the root-mean-square deviation (RMSD) values. Here, the bond lengths (0.038-0.037 Å) and angles (2.7-2.3 °) for that isomer show very good concordance with the experimental values. The two levels of approximation predict values for the glycosidic C10-N7 bonds closer to the experimental one (1.49 Å) [18]. Probably, the low dipole moment and the higher volume variation in solution explain their high stability in solution, as mentioned by Camerman and Trotter [18], because they have observed that when the CH₃ group in thymidine is replaced by iodine atom increase the stability of IDU. On the other hand, when the distances between the more electronegative atoms in gas and aqueous solution phases are investigated using both basis sets we observed that the high stability of C5 using 3-21G* basis set can in part be explained by the higher separation O2-O3 and O5-O3 distances and the low O6-I1 distances, as observed in Table S3. Apparently, a shorter O6-Il distance is the structural requirement for the high stability of an isomer of IDU, as suggested by Camerman and Trotter [18]. Probably, this distance is a structural requirement due to the ability of the iodine atom to form charge transfer and, in other words, maybe the molecular basis for the antiviral activity of IDU, as reported by Camerman and Trotter [18].

3.2. Solvation energy

We have computed the solvation energy values for the five configurations of IDU using the two basis sets and the values are summarized in Table 2. Hence, Table 2 shows the uncorrected and corrected solvation energies using the two levels of theory together with the

values corresponding to the total nonelectrostatic terms due to the cavitation, dispersion and repulsion energies computed with the PCM [22,23] and SM [24] models at the same levels of theory. When these values are represented in function of the five configurations at different levels of theory, as can be seen in Figure S3, the Lanl2dz basis set predicted the most negative values but the 3-21G* basis set shows the higher difference among the isomers. Thus, the lower values observed for C1 and C5 using 3-21G* basis set could justify their low dipole moment values in solution (Table S1). **Figure S4** shows the different magnitude and directions of the dipole moments using the Lanl2dz basis set which evidence clearly that the different charge distributions in the five structures have to influence on their stabilities and reaction sites.

3.3. NPA charges, Wiberg indexes, and MEP studies

The study of the charge distributions in the different configurations of IDU are of particular interest taking into account the presence in their structures of the C-I, C=O, N-H and OH groups and of N and O atoms containing lone pairs because the attraction and repulsion effects in the molecules are controlled by a variety of weak interactions, as mentioned by Immel [46]. In fact, the charge distributions determine the different properties and behaviour's of the molecules in the different media. For this reason, in the section 3.1 we have analysed in Table S3 the separation O-N and O-O distances between the electronegative N and O atoms which have showed, for instance, that a shorter O6-I1 distance could be an important structural requirement for the high stability of an isomer of IDU due to the available d orbitals of the I atom. When we analyzed the NPA charges on all the O atoms in both media the most negative values are observed on the O3 and O4 atoms using the Lanl2dz basis set, as compared with the Mulliken charges while the Mulliken charges on the N7 and N8 atoms in both media at B3LYP/3-21G* level of theory show the most negative values, as observed in Table S4. The analysis of these charges on the iodine atoms shows that the NPA charges using both basis sets predicted higher values than those corresponding to the Mulliken ones. When we analysed the bond orders, expressed as Wiberg indexes, whose results are presented in Table S5, we observed that the Lanl2dz basis set predicted higher values for the I, N, C and H atoms in general and, lower values for the O atoms. Note that the higher bond order values are observed in the O5 and O6 atoms, as expected due to that their bonds have the double character.

A very important result was observed when the molecular electrostatic potential surface mapped was investigated for C5 in the gas phase at the B3LYP/3-21G* level of theory because the expected sites reacting with potential biological nucleophiles or electrophiles were clearly observed, as shown Figure S5. Thus, this map has shown strong red colors on the O4, O5 and O6 atoms indicating nucleophilic sites reacting with potential biological electrophiles while the blue colours are observed on the H25, H27 and I1 atoms indicating these sites as electrophilic sites reacting with potential biological nucleophiles. Obviously, the mapped surface observed in the C5 configuration compared with that corresponding to the most stable C3 conformer of thymidine (Figure S6) could explain the higher experimental antiviral property observed for IDU than thymidine.

3.4. NBO and AIM analysis

Evidently, the C-I, C=O, N-H and OH groups and N and O atoms lone pairs belonging to the C5 structure of IDU contribute to their energetic stability and, for this reason, the knowledge of the type and interaction degree among those groups is important in order to understand the chemical and biological properties of these species in the different media. Hence, NBO [34] and AIM [36] calculations were employed to compute the stabilization energies and some topological parameters of interest to evaluate the type and degree of interaction. Particularly, in this study, we observed the importance of the basis set on the observed properties. Thus, for C5, five main delocalization energy values are observed in Table S6 using the Lanl2dz basis set, which are the $\Delta E_{\sigma \to \sigma^*}$, $\Delta E_{\pi \to \pi^*}$, $\Delta E_{n \to \sigma^*}$, $\Delta E_{n \to \pi^*}$ and $\Delta E_{\pi^* \to \pi^*}$ charge transfers while when the 3-21G* basis set is used appear a new $\Delta E_{\sigma \to \pi^*}$ charge transfer while disappearing the $\Delta E_{\pi^* \to \pi^*}$ charge transfer. Besides, two new $LP(2)O2 \to \sigma^*_{N7-C10}$ and $LP(2)O3 \rightarrow \sigma^*_{O4-H28}$ charge transfers are observed in both media using the 3-21G* basis set. Note that using both bases sets the $\Delta E_{\sigma \to \sigma^*}$ charge transfers are very weak as compared with the other ones while the higher values are calculated for the $\Delta E_{n \to \sigma^*}$ charge transfers. This way, the total ΔE_{Total} contribution result higher using the Lanl2dz basis set than the other one due to the additional $\Delta E_{\pi^* \to \pi^*}$ charge transfer observed only for this basis set. The study in both media reveals the high stability of C5 due to the stabilization energies, which are mainly associated to the presence of double C=O and C=C bonds and the lone pairs of the I, O and N atoms, as indicated in Table S5. Here, the antiviral activity observed for IDU could in part be justified only using the 3-21G* basis set because the calculations show slightly polarizations of the C16-I1 bonds from the I1 atom (polarized a 42.31%) toward the C atoms (polarized a

57.69%) and, also, the presence of electrons available in the *d* orbitals (0.44%) of the iodine atom. On the contrary, the Lanl2dz basis set reveals only the I1 atom polarized a 41.98% and the C atoms polarized a 58.02%.

The topological properties for C5 in both media using both basis sets were also computed with the AIM2000 program [36] in the bond critical points (BCPs) and ring critical points (RCPs), as predicted the Bader's theory [35]. Hence, the intra-molecular interactions observed were characterized by using four parameters: (i) electron density distribution, $\rho(r)$, (ii) the Laplacian values, $\Box^2 \rho(r)$, (iii) the eigenvalues ($\lambda 1$, $\lambda 2$, $\lambda 3$) of the Hessian matrix and, (vi) the $\lambda 1/\lambda 3$ ratio. In fact, the interaction is covalent if $\lambda 1/\lambda 3 > 1$, $\Box^2 \rho(r) < 0$ and $\rho(r)$ and $\Box^2 \rho(r)$ have high values while in the highly polar covalent or of hydrogen bonds ionic interaction those values are: $\lambda 1/\lambda 3 < 1$ and $\Box^2 \rho(r) > 0$ [47]. Here, the results for C5 in both media using both methods are presented in Table S7 and the same reveal different interactions, as observed in Figure S7 using the 3-21G* basis set. Thus, with this basis set three BCPs and five RCPs in the gas phase are observed for C5 in gas phase where, RCP1, RCP2, and RCP3 are the new RCPs formed by the three O---H BCPs and, where RCP_B and RCPs are those RCPs corresponding to the base and sugar rings, respectively. In solution with this basis set, only two BCPs are predicted. Note that the lanl2dz basis set predicted in gas phase only two BCPs (O2---H26 and O3---H28) which are similar to those observed in solution by using 3-21G* basis set while in solution with the lanl2dz basis set, only the O5---H19 interaction and a new RCP with the same properties are observed. Obviously, the high stability of C5 is evidenced by these H bonds interactions, as can be seen in Table S7. Both NBO and AIM studies support the high stability of C5 in both media and, moreover, show the importance of the basis set on the determination of these properties. When the $\rho(r)$ and $\Box^2 \rho(r)$ values for both rings of IDU are compared with the values corresponding to the most stable C3 conformer of thymidine we observed that the effect of change the CH₃ group by an idine atom is to increase those two values of the sugar ring ($\rho(r) = 0.0386$ a.u. and $\Box^2 \rho(r) =$ 0.2756 a.u.) while the values for the base ring decrease up to $(\rho(r) = 0.0190$ a.u. and $\Box^2 \rho(r)$ =0.1484 a.u.). The differences observed are justified because the calculations were performed on different basis sets.

3.5. Gap and descriptors values

Many works have reported the importance of the use of the frontier orbitals to predict reactivity and behaviors of species with different biological properties in diverse media [19,25-31]. Thus, for the C5 configuration of IDU in both media, the HOMO-LUMO orbitals and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) descriptors were calculated at B3LYP/Lanl2dz and 3-21G* levels of theory. These properties are presented in Table S8 compared with the corresponding values for the antiviral thymidine [19] and brincidofovir agents, where the latter antiviral drug is used for the treatment of the *Ebola* disease [31]. The results show different behavior with the basis set and with the medium considered. Thus, the calculations using both basis sets show that C5 is less reactive in gas phase than in aqueous solution and, also, it is most reactive than thymidine and less than brincidofovir. Hence, the interchange of an iodine atom by a CH₃ group increases notably their reactivities in both media and with the two basis sets, as proposed by Camerman and Trotter [18]. Here, the low gap and global hardness (η) values and, the high global softness (S) values for brincidofovir could explain their high reactivity against to idoxuridine and thymidine. Besides, the pyrimidine ring of brincidofovir present high values of $\rho(r) = 0.0212$ a.u. and $\Box^2 \rho(r) = 0.1644$ a.u., as compared with the values of the base in IDU.

3.6. NMR study

Tables S9 and S10 show for the C5 isomer of IDU in aqueous solution the ¹H- and ¹³C-NMR chemical shifts, respectively by using the GIAO method [43] at the B3LYP/Lanl2dz and 3-21G* levels of theory. These values were compared with the corresponding experimental available for thymidine in DMSO-d6 and D₂O from Refs. [48,49] by means of the RMSD values. Note that the better correlation is observed for the H nuclei (2.34-2.33 ppm) whose little differences could be attributed: (i) to that thymidine differs of idoxuridine by a CH₃ group, (ii) to the medium, because the theoretical values were calculated in aqueous solution while the experimental ones were registered in DMSO-d6 solution and, (iii) to the presence of intra-molecular O---H bonds where the H25 and H28 atoms are involved, as observed by the MEP map and AIM studies. Note that both methods predicted very low values for those two H atoms in relation to the experimental ones observed of 5.25-5.04 ppm. In relation to the calculated chemical shifts for the ¹³C nucleus, we observed that the Lanl2dz basis set predicted slightly higher values than the experimental ones, as can be seen in Table S10.

Obviously, the correlation for these atoms isn't very good due to presence of the CH_3 group in thymidine that modify principally the properties of the pyrimidine ring including the dipole moment value that increases in solution up to 11.02 D, in relation to idoxuridine whose dipole moment values are 9.14 and 4.00 D using the Lanl2dz and 3-21G* basis sets, respectively. Possibly, another isomer of idoxuridine can be present in the solution that modifies the chemical shifts, as reported for the antiviral emtricitabine by Shi-Yun et al. [50].

3.7. Vibrational analysis

To perform this analysis we have considered the C4 and C5 isomers because these species are energetically stables using the Lanl2dz basis set while using the other one basis set C5 is the only stable. In Figure 2 it is compared the available infrared spectrum of idoxuridine taken from Ref [51] in Mujol mull with the corresponding predicted for C4 and C5 by using both levels of calculations while their predicted Raman spectra for these species are compared in Figure 3 with the available experimental in the solid phase taken from Ref. [52]. The influence of the basis set on the infrared spectrum of the C5 isomer of idoxuridine in gas phase using the hybrid B3LYP method and 3-21G* and Lanl2dz levels of theory can be clearly seen in Figure S8. Note that the presence of the dimeric species justifies the two strongest bands observed in the infrared spectrum in the higher wavenumbers region. The optimized structures of both species using the two basis sets present C_1 symmetries and 78 normal vibration modes where all these modes have activity in IR and Raman. The observed and calculated wavenumbers and assignments for the C4 and C5 isomers of idoxuridine are summarized in Table 3. In fact, in this table we have also added the IR bands of IDU in the solid phase taken from Ref [53]. The vibrational assignments were performed following the SQMFF procedure [32] with the Molvib program using both levels of approximations. In this case, to calculate the corresponding harmonic force fields we used scale factors defined for the 6-31G* basis set [32]. The assignments for some groups are discussed below.

3.7.1. Band Assignments

Region 4000-2500 cm⁻¹. In this region, the N-H, OH and C-H stretching modes and, the CH_2 antisymmetric and symmetric modes are expected for C4 and C5 in both media. In general, we observed that the SQM calculations for C5 using the Lanl2dz basis set predicted the frequencies to higher wavenumbers than the 3-21G* basis set, as observed in Table 3. Hence, the broad and intense IR band at 3319 cm⁻¹ can be easily assigned to the N-H, OH and C-H

stretching modes while the weak Raman band at 3088 cm⁻¹ and the very intense band at 2866 cm⁻¹ are assigned to the antisymmetric and symmetric CH_2 stretching modes, respectively and, to the C9-H18 and C12-H22 stretching modes, as predicted by SQM calculations. Note that the two intense bands predicted at 3370 and 3212 cm⁻¹ in the IR spectrum of the dimer also support the two strong bands observed in the experimental IR spectrum, as shown Figure 2. Besides, these wide bands suggest the intra-molecular H bonds formation, as reported for the antiviral thymidine [19].

Region 2000-1000 cm⁻¹. The Lanl2dz and 3-21G* SQM calculations predicted modes strongly coupled in this region, thus between 1692 and 1542 cm⁻¹ are predicted the C14=O5, C17=O6, C15=C16 stretching modes while between 1564 and 1400 cm⁻¹ are predicted some in-plane N-H, C-H, and OH deformation modes together with the CH₂ deformation modes, hence, all these modes are associated with the bands observed in those regions, as indicated in Table 3. Probably, that coupling increase the intensities of the IR bands located at 1446 and 1258 cm⁻¹ in the experimental spectrum. On the other hand, the CH₂ wagging, rocking and twisting modes and the N7-C15, N8-C14, N8-C17, C12-C13, C9-O3, C16-C17 stretching modes are also expected in this region, for this reason, the IR and Raman bands observed between 1401 and 1010 cm⁻¹ are assigned to those vibration modes. Notice that for C5 in both media, the 3-21G* basis set predicted at lower wavenumbers. Additionally, we observed from Figure 2 that the IR spectrum for C5 using the 3-21G* basis set present a better concordance in this region with the corresponding experimental one.

Region 1000-20 cm⁻¹. Some expected C-O and N-C stretching and out-of-plane NH, CH and OH deformation modes in this region are strongly coupled among them and, besides, these modes are observed in different regions using the different basis sets, as can be seen in Table 3. For these reasons, all these modes were assigned in accordance with the calculations. In both conformers, the torsion rings modes are predicted using the two basis sets between 410 and 20 cm⁻¹, as shown in Table 3 while the SQM calculations with both bases sets predicted the C-I stretching modes between 215 and 193 cm⁻¹, for this reason, this mode in both isomers can be associated to the Raman band at 210 cm⁻¹.

3.8. Force fields

The harmonic force fields for C4 and C5 using the Lanl2dz and 3-21G* basis sets were computed with the SQM method [32] and the Molvib program [43] in order to obtain the harmonic force constants expressed in internal coordinates. Afterwards, these constants were compared with those calculated for the antiviral zalcitabine [54] using the B3LYP/6-31G* method in Table 5. The results for C4 and C5 show slight variations with the basis sets and with the different media employed, thus, the f(vO-H), f(vN-H) and f(vC=O) force constants evidence the higher changes presenting the f(vC=O) constants the higher values using the 3-21G* basis set. Notice that for both conformers the $f(vC-O)_{OH}$, f(vO-H) and f(vC=O) force constants are slightly modified in solution as a consequence of the hydration of these sites with water molecules. The variation in the $f(\nu C-O)_{A5}$ constants corresponding to the sugar rings show the influence of the hydration of these OH sites on the C-O distances of the ribose ring. The higher force constant values for zalcitabine, in relation to idoxuridine can probably in part be justified because their values were calculated using the 6-31G* basis set and, in part by the absences of a C=O group and the presence of an NH₂ group in the pyrimidine ring and of an OH group in the sugar ring. In general, it is possible to observe a very good concordance in the force constant values in relation to those reported for compounds with similar groups [19,27-29].

4. UV-visible spectrum

In Figure 4 are presented the predicted electronic spectra for the C5 isomer of IDU in aqueous solution using both basis sets compared with the available experimental spectra for thymidine in aqueous solution [55] and for idoxuridine in methanol, water and 0.1 M HCl solutions [56,57] while in Table S11 are presented the positions and intensities of the observed bands and of the TD-DFT calculated absorption wavelengths. Note in all the cases the influence of the solvent on the positions of the two experimental bands. The assignments of these bands were performed taking into account the different charge transfers predicted by using NBO calculations. In fact, the position of the maxima in the different spectra can be attributed to the $n \rightarrow \pi^*$ transitions from the lone pairs of the *II*, *N7*, *N8* atoms to the C=O and C=C antibonding orbitals, as was detailed in Table S6. When we compared the electronic spectra of thymidine and idoxuridine we observed clearly that the presence of a CH₃ group and the absence of a C=O in thymidine produce the shifting of both bands toward lower

wavelengths whiles the presence of the iodine atom and of two C=O groups in idoxuridine shift the bands towards higher wavelengths.

5. CONCLUSIONS

In the present work, the theoretical molecular structures of five isomers of idoxuridine, two Cis, and three Trans configurations, were determined by using the hybrid B3LYP method with the Lanl2dz and 3-21G* levels of theory in gas and aqueous solution phases. Here, the structural properties and the spectroscopic studies were performed only for the C4 and C5 isomers according to the experimental anti-structure reported for idoxuridine. Hence, the infrared, Raman, ¹H-NMR, ¹³C-NMR and UV-visible spectra predicted for the two most stable isomers by using the 3-21G* basis set in the two studied media show a reasonable agreement with the corresponding available experimental spectra. The presence of bands associated with a dimeric species of idoxuridine was also evidenced in the experimental FTIR spectrum. The Mulliken, NPA charges, solvation energies and the NBO and AIM studies evidence clearly the notable influence of the basis set on the properties analyzed. Hence, the antiviral activity observed for IDU can in part be justified using the 3-21G* basis set because these calculations show slightly polarizations of the C16←I1 bonds and electrons available in the *d* orbitals of the iodine atom. The frontier orbitals show that the presence of the iodine atom in idoxuridine increases their reactivity as compared with thymidine while idoxuridine is less reactive than brincidofovir, an antiviral drug used against the *Ebola* disease.

Acknowledgements

This work was supported by grants from CIUNT Project N° 26/D207 (Consejo de Investigaciones, Universidad Nacional de Tucumán). The authors would like to thank Prof. Tom Sundius for his permission to use MOLVIB.

REFERENCES

De Clercq E, Descamps J, De Somer P, Barrt,PJ, Jones AS, Walker RT. (E)-5-(2-Bromovinyl)-2'-deoxyuridine: A potent and selective anti-herpes agent. Proc. Natl. Acad. Sci. 1979; 76(6):2947-2951.
 Maudgal PC, Verbruggen AM, De Clercq E, Dusson R, Dernaerts R, de Roo M, Ameye C, MissottenL, Ocular Penetration of (¹²⁵I)IVDU, a Radiolabeled Analogue of Bromovinyldeoxyuridine. 1985; 26:45-49.
 Kulikowiski T. Structure-activity relationships and conformational feactures of antiherpetic pyrimidine and purine nucleoside analogues. A review. Pharma World Sci. 1994; 16(2):127-138.
 Azhar KF, Qudrat-E-Khuda M, Zuberi R. Synthesis of some cytidine derivatives and their antibacterial effects. J. Chem. Soc. Pak. 2002; 24(1):57-61.

[5] Pochet S, Dugué L, Labesse G, Delepierre M, Munier-Lehmann H. Comparative study of purine and pyrimidine nucleoside analogues acting on the thymidylate kinases of Mycobacterium tuberculosis and of humans. ChemBioChem 2003; 4:742-747.

[6] De Clercq E, Antiviral drugs in current clinical use. Journal of Clinical Virology. 2004; 30:115–133.

[7] Branco BC, Gaudio PA, Margolis TP. Epidemiology and molecular analysis of herpes simples keratitis requiring primary penetrating keratoplasty. Br J Ophthalmol. 2004; 88:1285-1288.

[8] Ye M, Yu C-Y, Li N, Zong M-H. Highly regioselective glucosylation of 2β -deoxynucleosides by using the crude β -glycosidase from bovine liver. Journal of Biotechnology. 2011; 155:203-208.

[9] Sreenivas B, Akhila M, Mohammed B. Synthesis and biological evaluation of pyrimidine analogs as potential antimicrobial agents. International Journal of Pharmacy and Pharmaceutical Sciences. 2012; 4(2):306-310.

[10] Shilpa C, Dipak S, Vimukta S, Arti D. Microwave and Conventional Synthesis of Pyrimidine Derivatives and their Pharmacological Activity- A Review. Journal of Pharmaceutical and Biomedical Sciences (JPBMS). 2012; 21(21):1-11.

[11] Sultana T, Khan W. A Facile Synthesis of 5-Iodo-6-Substituted Pyrimidines from Uracil-6-Carboxylic acid (Orotic acid). J. Pharm. Sci. 2013; 12(2):97-102.

[12] Harshalata D, Dhongade HJ, Kavita C. Pharmacological potentials of pyrimidine derivative: A review. Asian J Pharm Clin Res. 2015; 8(4):171-177.

[13] Uniyal A, Choudhary AN, Kothiyal P. Synthesis and antibacterial activity of pyrimidine derivatives, Ayushi Uniyal, et al. Int J Pharm. 2015; 5(1):202-206.

[14] Hamouda AM, Mohamed KO. Synthesis and Antimicrobial Evaluation of Some New Dihydropyrimidine Derivatives. Der Pharma Chemica. 2015; 7(6):116-125.

[15] Srivastava, A. Synthesis and structural investigations of co-ordination compounds of palladium (II) with uracil, uracil 4 carboxylic acid and 4-amino uracil. J Biosci Tech. 2011; 2(1):213-219.

[16] Sajiki H, Iida Y, (Yasunaga) Ikawa K, Sawama Y, Monguchi Y, Kitade Y, Maki Y, Inoue H, Hirota K. Development of Diversified Methods for Chemical Modification of the 5,6-Double Bond of Uracil Derivatives Depending on Active Methylene Compounds. Molecules. 2012; 17:6519-6546.

[17] Prusosif WH. 1959. Biochem. Biophys. Acta. 32:295. C. A. 54 (1960) 13383g.

[18] Camerman N, Trotter J. The crystal and molecular structure of 5-Yodo-2'-deoxyuridine, Acta Cryst. 1965; 18:203-211.

[19] Márquez MB, Brandán SA. A structural and vibrational investigation on the antiviral deoxyribonucleoside thymidine agent in gas and aqueous solution phases. International J. of Quantum Chem. 2014; 114(3):209-221.

[20] Becke AD. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993; 98:5648-5652.

[21] Lee C, Yang W, Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988; B37: 785-789.

[22] Tomasi J, Persico J. Molecular Interactions in Solution: An Overview of Methods Based on Continous Distributions of the Solvent. Chem. Rev. 1994; 94:2027-2094.

[23] Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. Chem. Phys. 1981; 55:117–129.

[24] Marenich AV, Cramer CJ, Truhlar D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. 2009; B113:6378-6396.

[25] Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983; 105:7512-7516.

[26] Brédas J-L. Mind the gap!. Materials Horizons 2014; 1:17–19.

[27] Márquez MJ, Márquez MB, Cataldo PG, Brandán SA. A Comparative Study on the Structural and Vibrational Properties of Two Potential Antimicrobial and Anticancer Cyanopyridine Derivatives. A Open Journal of Synthesis Theory and Applications, 2015; 4:1-19.

[28] Cataldo PG, Castillo MV, Brandán SA. Quantum Mechanical Modeling of Fluoromethylated-pyrrol Derivatives a Study on their Reactivities, Structures and Vibrational Properties. J Phys Chem Biophys 2014; 4(1):2-9.

[29] Romani D, Brandán SA. Structural and spectroscopic studies of two 1,3-benzothiazole tautomers with potential antimicrobial activity in different media. Prediction of their reactivities. Computational and Theoretical Chem. 2015; 1061:89-99.

[30] Romani D, Márquez MJ, Márquez MB, Brandán SA. Structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities. J. Mol. Struct. 2015; 1100:279-289.

[31] Romani, D, Brandán SA. Effect of the side chain on the properties from cidofovir to brincidofovir, an experimental antiviral drug against to Ebola virus disease. Arabian Journal of Chemistry. 2015; http://dx.doi.org/10.1016/j.arabjc.2015.06.030.

[32] a) Rauhut G, Pulay P. J. Phys. Chem. 99:3093-3099. b) Rauhut G, Pulay P. 1995. J. Phys. Chem. 1995; 99:14572.

[33] Reed AE, Curtis LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988; 88(6):899-926.

[34] Glendening ED, Badenhoop JK, Reed AD, Carpenter JE, Weinhold F. 1996. NBO 3.1; Theoretical Chemistry Institute, University of Wisconsin; Madison.

[35] Bader RFW. Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford, ISBN: 0198558651; 1990.

[36] Biegler-Köning F, Schönbohm J, Bayles DJ. AIM2000; a program to analyze and visualize atoms in molecules. Comput. Chem. 2001; 22:545-559.

[37] Sanmarti B., M., Berenguer Maimo, Ramón, Solsona Rocabert, Joan Gabriel, EUROPEAN PATENT APPLICATION, EP 2 377 862 A1 19.10.2011 Bulletin 2011/42.

[38] Nielsen AB, Holder AJ. 2008. Gauss View 5.0, User's Reference, GAUSSIAN Inc., Pittsburgh, PA.

[39] Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[40] Stevens WJ, Krauss M, Basch H, Jasien PG. Relativistic compact effective potential and efficient, shared-exponent basis-sets for the 3rd-row, 4th-row, and, 5th-row atoms. 1992. Can. J. Chem. 70:612-630.

[41] Wadt WR, Hay P J. Ab-initio effective core potentials for molecular calculations-potentials for main group elements Na to Bi, J. Chem. Phys. 1985; 82:284-298.

[42] Dobbs KD., Hehre WJ. Molecular-orbital theory of the properties of inorganic and organometallic compounds. 4. Extended basis sets for 3^{rd} row and 4^{th} row, main group elements. J. Comp. Chem. 1986; 7:359-378.

[43] Sundius T. Scaling of ab-initio force fields by MOLVIB. Vib. Spectrosc. 2002; 29:89-95.

[44] Ugliengo P. MOLDRAW Program, University of Torino, Dipartimento Chimica IFM, Torino, Italy, 1998.

[45] Ditchfield R. Self-consistent perturbation theory of diamagnetism. I. A gage-invariant LCAO (linear combination of atomic orbitals) method for NMR chemical shifts. Mol.Phys. 1974; 27:789-807.

[46] Immel, S. Computer Simulation of Chemical and Biological Properties of Saccharides: Sucrose, Fructose, Cyclodextrins, and Starch, *Thesis*, Darmstadt University of Technology, 1995.

[47] Bushmarinov IS, Lyssenko KA, Antipin MY, Russian Chem. Rev. 2009; 78(4):283-302.

[48] Available from: http://www.sigmaaldrich.com/spectra/fnmr/FNMR009012.PDF

[49] Available from: http://www.hanhonggroup.com/nmr/nmr_en/4435.html

[50] Shi-yun C, Yong H, San-xi Y, Yong-hao G, Hao J, Zong-hao W, Spectral Analysis and Structural Elucidation of Emtricitabine. Chinese Journal of Magnetic Resonance. 2013; 30(3):398-405.

[51] Available from: http://webbook.nist.gov/cgi/ chemistry/IR-Spec

[52] Geze A, Chourpa I, Boury F, Benoit J-P, Dubois P. Direct qualitative and quantitative characterization of a radiosensitizer, 5-iodo-2A-deoxyuridine within biodegradable polymeric microspheres by FT-Raman spectroscopy. Analyst. 1999; 124:37-42.

[53] Available from: http://www.sigmaaldrich.com/spectra/FTIR008222.PDF

[54] Checa MA, Rudyk RA, Chamorro EE, Brandán SA. Structural and Vibrational Properties of a Reverse Inhibitor Against the HIV Virus, Dideoxynucleoside Zalcitabine in Gas and Aqueous Solution Phases, pg. 1-26, in Silvia A. Brandán Edit. "Descriptors, Structural and Spectroscopic Properties of Heterocyclic Derivatives of Importance for Health and the Environment", Edited Collection, Nova Science Publishers, 2015.

[55] Available from: http://webbook.nist.gov/cgi/cbook.cgi?ID=C50895&Mask=400#UV-Vis-Spec

[56] Available from: https://www.pmda.go.jp/files/000152703.pdf

[57] Available from: http://newdrugapprovals.org/2014/08/31/idoxuridine/

 Table 1. Comparison of calculated geometrical parameters for the most stable C5 isomer of Idoxuridine in gas and aqueous solution phases

Domomotorra	B3LYP/LA	NL2DZ ^a	B3LYP/3-2	D ^b	
Parameters	Gas phase	PCM	Gas phase	PCM	— Exp
Bond lengths (Å)					
C16-I1	2.111	2.112	2.116	2.118	2.050
C16-C17	1.469	1.457	1.459	1.450	1.490
C15-C16	1.366	1.366	1.350	1.354	1.340
C17-O6	1.248	1.267	1.233	1.245	1.210
C17-N8	1.423	1.405	1.420	1.406	1.360
C14-N8	1.390	1.388	1.386	1.383	1.380
C14-N7	1.403	1.396	1.402	1.396	1.370
C15-N7	1.403	1.388	1.379	1.370	1.370
C10-N7	1.490	1.490	1.509	1.511	1.490
C10-O2	1.451	1.465	1.446	1.451	1.420
C12-O2	1.490	1.494	1.497	1.496	1.420
C10-C11	1.544	1.544	1.533	1.532	1.550
C9-C11	1.539	1.540	1.540	1.536	1.560
C9-C12	1.548	1.537	1.552	1.551	1.530
RMSD	0.037	0.038	0.037	0.037	
Bond angles (°)					
N8-C17-O6	119.8	119.6	120.7	120.5	121.0
N8-C14-O5	123.3	121.6	124.0	123.7	119.0
C17-C16-I1	118.3	119.1	116.4	116.5	119.0
C15-C16-I1	121.4	121.3	122.6	122.7	123.0
C14-N7-C15	122.0	121.3	122.0	122.2	123.0
N7-C10-O2	108.1	108.6	108.0	107.7	109.0
N7-C10-C11	114.0	113.9	111.4	111.3	114.0

C10-O2-C12	109.7	109.4	109.7	109.6	111.0
C11-C10-O2	105.4	106.2	106.1	106.8	109.0
C9-C11-C10	102.6	103.7	102.4	102.8	104.0
C9-C12-O2	105.7	104.3	104.9	104.4	110.0
C12-C13-O4	110.5	110.5	109.7	109.6	113.0
RMSD	2.3	2.3	2.7	2.7	
Dihedral angle (°)					
O2-C10-N7-C14	-168.7	-128.7	-179.9	-172.2	-67.0#
O2-C10-N7-C15	9.6	50.4	-6.8	5.3	81.0
C11-C10-N7-C14	74.3	112.9	63.7	70.8	
C11-C10-N7-C15	-107.2	-67.8	-123.1	-111.5	
N7-C15-C16-I1	179.9	179.9	-179.4	-179.7	
O2-C12-C13-O4	168.1	-174.4	-171.6	-178.3	
O2-C12-C9-O3	-95.7	-83.0	-147.8	-149.1	
N7-C10-O2-C12	-142.9	-123.8	-103.5	-109.8	
N7-C10-C11-C9	152.6	142.5	84.2	88.2	
RMSD#	101.7	61.7	79.8	74.4	
RMSD	71.9	43.6	87.8	75.7	

^aThis work, ^bFrom Ref [18]

PCM/B3LYP ^a			
$\Delta G (kJ/mol)$			
LanL2DZ			
Conformers	$\Delta {G_u}^{\#}$	ΔG_{ne}	ΔG_c
C1	-147.94	24.95	-172.89
C2	-162.10	25.46	-187.56
C3	-157.38	26.12	-183.50
C4	-159.48	25.58	-185.06
C5	-137.18	25.58	-162.76
3-21G*			
C1	-74.49	25.00	-99.49
C2	-131.15	24.12	-155.27
C3	-110.28	25.37	-135.65
C4	-108.59	26.50	-135.09
C5	-99.67	24.83	-124.50

Table 2. Calculated solvation energies (ΔG) for the stable C5 conformers of idoxuridine

 $\Delta G_c = \Delta G_{uncorrected}^{\ \#} \text{-} \Delta G_{Total \ non-electrostatic}$

- .			BSLYP/LA	ANL2D2							D3LTP/3*213*			
Experime	ental		CS		04				CS					
			Gas phas	e	Aqueous	solution	Gas phas	e	Aqueous	solution	Gas phas	e	Aqueous	solution
IR ²	IR	Raman"	SQM"	Asignment	SQ/Vf*	Asignment	sqivi	Asignment	sqivi	Asignment	SQM ^E	Asignment	SQM ^E	Asignment
			3549	v03-H25	3546	v04-H28	3544	v03-H25	3535	v04-H28	3389	vN8-H27	3377	v03-H25
3359 sh	3388 m		3498	vO4-H28	3535	v03-H25	3526	v04-H28	3535	v03-H25	3376	v03-H25	3354	vN8-H27
3319 s	3343 sh		3457	vN8-H27	3433	vN8-H27	3457	vN8-H27	3422	vN8-H27	3242	vO4-H28	3141	vC15-H26
3240 sh		3203sh	3143	vC15-H26	3138	vC15-H26	3138	vC15-H26	3136	vC15-H26	3132	vC15-H26	3065	v04-H28
	3176 w	3088w	3040	$\nu_a CH_1(C13)$	3062	vC10-H19	3073	$v_{\rm s} \text{CH}_{\rm s}(\text{C13})$	3064	vC10-H19	3064	$v_s CH_j (C11)$	3063	$v_s CH_s (C11)$
	3028 sh	3028w	3038	v ₂ CH ₂ (C11)	3047	v ₃ CH ₃ (C13)	3044	$\nu_{s}\text{CH}_{s}(\text{C11})$	3056	$v_{\rm s} CH_{\rm s} (C13)$	3005	vC12-H22	3024	vC10-H19
2991 vw			2991	vC10-H19	3042	$\nu_{s}\text{CH}_{s}(\text{C11})$	2994	vC10-H19	3042	$\nu_{a}\text{CH}_{2}(\text{C11})$	3002	vC10-H19	3016	vC12-H22
	2952 vs	2977m	2985	vC9-H18	3003	vC9-H18	2965	$v_{z}CH_{2}(C11)$	3000	vC9-H18	2988	v ₂ CH ₂ (C13)	2993	vC9-H18
	2921 vs	2973sh	2966	vC12-H22	2981	v ₄ CH ₂ (C13)	2946	vC9-H18	2975	$v_c CH_2(C11)$	2977	$v_{z}CH_{2}(C11)$	2981	$v_{s}CH_{2}(C11)$
2866 vs	2863 sh	2949w	2961	v ₄ CH ₂ (C13)	2976	v ₂ CH ₂ (C11)	2928	v ₄ CH ₂ (C13)	2958	vC12-H22	2933	vC9-H18	2978	$v_{s}CH_{s}(C13)$
2826 vs	2851 vs	2921w	2958	v ₄ CH ₂ [C11]	2969	vC12-H22	2918	vC12-H22	2955	v ₄ CH ₂ (C13)	2883	$v_{s}CH_{2}(C13)$	2895	v.CH ₂ (C13)
1689 vs	1702 vs	1695sh	1646	vC14=05	1604	vC15=C16	1645	vC14=05	1599	vC15=C16	1692	vC17=06	1635	vC14=05
1665 vs	1675 vs	1675vs	1617	vC17=06	1564	βN8-H27	1616	vC17=06	1558	vC14=05	1679	vC14=05	1616	vC17=06
1600 m	1609 s	1608s	1583	vC15=C16	1542	vC17=06	1582	vC15=C16	1542	vC17=06	1587	vC15=C16	1575	vC15=C16
1445 s	1461 s	1464m	1448	5CH,(C13)	1449	p'C10-H19	1445	5CH,(C11)	1455	p'C10-H19	1503	5CH,(C13)	1503	5C13O4H28
1434 sh	1427 w	1448sh	1443	δCH ₂ (C11)	1437	δCH ₂ (C13)	1425	δCH ₂ (C13)	1429	δCH ₂ (C13)	1489	5C13O4H28	1490	δCH ₃ (C13)
1416 w	1413 w	1416vw	1425	p'C10-H19	1424	5CH;(C11)	1417	p'C10-H19	1426	5CH2(C11)	1483	5CH;(C11)	1459	5CH;(C11)
1401 w		1397w	1399	p'C9-H18	1413	βC15-H26	1403	wagCH _i (C13)	1407	p'C9-H18	1417	βN8-H27	1422	p'C9-H18
1394 sh	1397 w		1394	βN8-H27	1407	ρ'C9-H18	1396	p'C9-H18	1400	βC15-H26	1415	p'C9-H18	1416	p'C10-H19
1385 w	1381 m		1389	wagCH ₂ (C13)	1396	pC12-H22	1392	βN8-H27	1398	wagCH ₁ (C13)	1402	pC12-H22	1402	βN8-H27
1373 sh			1373	aC12-H22	1382	warCH/C13)	1372	-010-1410	1372	RAIR-H27	1395	-'C10-H10	1398	-012-822
1070 58		1	1575	p012-n22	1552	wagon((cr3)	13/2	pero-nis	15/2	pixe-n27	1555	p C10-119	1555	p012-n22
1369 m		1365sh	1371	pC10-H19	1379	vC14=05	1361	pCH ₂ (C13)	1369	5C13O4H28	1376	oC9-H18	1369	warCH/(C13)
1000 111		10000		βC15-H26	10.00			SC13O4H28	1000	002004120	10.00	100 1120		mager ((ezo)
1360 sh	1354 w	1353s	1358	5C13O4H28	1358	oC10-H19	1356	oC12-H22	1367	oC10-H19	1353	oC10-H19	1357	oC10-H19
						,		,		,		,		o'C10-H19
1341 w			1345	βC15-H26	1345	SC13O4H28	1343	βC15-H26	1352	pC12-H22	1350	wagCH ₂ (C13)	1337	
				8C15-H26		5C13O4H28		-C9-H18		oC10-H19				рс10-Н19
1337 sh			1334	p0151120	1341	0015041125	1334	0.000	1340	20101115	1328	βC15-H26	1334	pC9-H18
				pC9-H18		vN7-C14		wagCH ₂ (CII)		p'C10-H19				
1328 sh			1327	pC10-H19	1329	pC9-H18	1325	pC10-H19	1336	wagCH _i (C11)	1318	vN7-C14	1312	vN7-C14
1294 sh	1298 m	1313w	1313	p'C12-H22	1316	p'C12-H22	1301	p'C12-H22	1312	p'C12-H22	1287	p'C12-H22	1300	5C9O3H25
1289 m	1270 m	1269w	1283	wagCH ₂ (C11)	1291	wagCH ₂ (C11)	1281	wagCH ₂ (C11)	1293	pC9-H18	1265	wagCH ₂ (C11)	1274	p'C12-H22
1258 s	1257 m		1265	vN7-C15	1257	vN8-C14	1262	vN7-C15	1258	vN8-C14	1256	δC9O3H25	1256	wagCH ₂ (C11)
1245 m		1241w	1209	pCH;(C13)	1215	pCH;(C11)	1212	pC9-H18	1214	pCH;(C13)	1236	vN7-C15	1242	vN7-C15
	4395	4303	4305	pC9-H18	4303	500001105			4303	CI (CI 4)	4330	011/0121		011/0121
1195 m	1206 w	1202m	1205		1202	0C9O3H25	119/	pcH ₂ (C11)	1205	pcH ₂ (CII)	1220	pCH ₂ (CIS)	1212	pcH ₂ (CIS)
1180 sh			1173	vN8-C14	1182	vN8-C17	1168	vN8-C14	1188	δC9O3H25	1187	pCH;(C11)	1181	pCH;(C11)
				17.010								1 - 1		1 . 1
1169 sh	1150 w	1150w	1167	pCH;(C11)	1163	pCH ₂ (C13)	1164	SC903H25	1166	vN7-C15	1114	vN8-C14	1126	vN8-C14
1132 sh			1114	vN8-C17	1136	vC12-C13	1112	vN8-C17	1131	vN7-C10	1083	vN8-C17	1105	vC12-C13
				vN7-C14				vN7-C10						vN8-C17
1095 s	1104 s	1098w	1100	vC12-C13.	1114	vN7-C10	1083	vC9-C12	1092	vC12-C13	1070	vC12-C13	1087	βR ₁ (A6)
1065 m	1078 m	1074w	1051	vC9-O3	1050	vC10-C11	1070	vC12-C13	1064	vC12-C13	1045	vC9-03	1038	SC9C12C13
				τCH ₂ (C11)						vC9-O3				vC12-C13
1049 m	1061 w	1054w	1043	vC10-C11	1028	vC9-C11	1037	vC10-C11	1029	vC9-C11	1039	βR:(A5)	1020	βR:(A5)
1022 w	1031 w	1027w	1010	vC9-C11	1008	vC16-C17	1013	vC9-C11	1005	vC16-C17	1021	γC15-H26	1004	γ C15-H26
995	999	990	982	vC13-04	996	RR./A51	985	68./A61	997	RR./451	1011	vC10-02	901	109-03
353 W	335 W	335W	355	0010-04	330	[CM/I/M	503	[cw//wd	337	(cellud	1011	010-02	351	005-05

Table 3. Observed and calculated wavenumbers (cm⁻¹) and assignments for the C4 and C5 isomers of idoxuridine in gas phase and aqueous solution

Citation: Silvia Antonia Brandánb et al. Ijsrm.Human, 2017; Vol. 8 (1): 66-86.

γC15-H26

968

γC15-H26

985

vC13-04

981

vC16-C17

984

983 m 989 m

985

vC16-C17

965

vC13-04

													vC13-O4		vC16-C17		
953 m	959 W	963W	9/6	γC15-Η	126	956	γC15-Η	26	968	vC13-04		152	-CH./C13)	9/5	xN7-C14	9/2	vC13-04
													vC13-04		0107-024		
948 sh			937	vC12-0	02	930	τCH ₂ (C)	13)	952	vC10-02	9	937	0015-04	960	vC10-C11	961	vC10-C11
													vC10-02				
912 m	919 w	915w	933	τCH ₂ {C	:13)	921	τCH ₂ (C)	11)	926	VC10-C11	. 8	921	vC10-02	936	TCH.(C13)	929	τCH ₂ (C13)
										vC10-02			-04 (011)				
907 m			900	vC10-0	02	879	vC10-0	2	901	tchy(cis)	' s	902	ten/(cm)	901	vC12-02	906	1012-02
										τCH ₂ (C11))		vC9-C12				τCH ₂ (C11)
880 w	886 w	883w	847	vC9-0	3	854	vC9-03	;	835	vC9-O3	8	332	vC9-O3	893	vC9-C11	892	vC10-02
																	vC9-C11
873 w	877 w	859w	827	τCH ₂ {C	31)	816	vC12-0	17	819	RP. / A51	,	306	88.(45)	863	-P (A6)	836	τR:(A6)
				βR ₂ (A5	9					hut/~)			prof~)		ch((A 0)		rC17=06
795 vw			807	nNS-H	27	789	τR.(A6)		806	1N8-H27	-	782	τR.(A6)	785	γC14=05	785	TC14=05
							-1 -			•					017.00		
775 w	782 w	780vs	783	vC9-C1	12	781	vC9-C1	2	788	vC12-02	7	774	vC12-02	773	vC9-C12	778	vC9-C12
	764	75.0			-		βR.(A6	1		00 (45)				700	17.010	700	500010117
/54 W	761 W	/50W	/4/	pR:(Ab	-	/55			/6/	pR:(A5)		58	005C9C12	/69	VN/-C10	/69	002C10N/
747	757	727-h	726	yC14=0	05	720	yC14=0	,4)5	745	vC16-C17				754	vC16-C17	755	
747 m	732 W	73750	/50			/38			/43			32	007-014	/51	20 (45)	/55	0107-010
717	776		710	PC1/=0		719	vC9-C1	2	736	γC14=05		240	γC14=05	73.7	-MR-H37	774	80 / 451
/1/ ***	720 W		/15	hu:/wa	9	/10			/50	-017-06		40	-017-06	732	190-1127	/24	hu:/HO]
709 vw	695 w	691sh	709	τR.(A6]	708	γN8-H2	, .7	709	τR.(A6)	e	584	βR:(A5)	719	βR:(A5)	700	τO4-H28
670 vw	675 w	672w	660	BN7-C	10	680	BR.(AS)	1	666	BN7-C10		573	1N8-H27	658	BC14=05	673	1/N8-H27
							P	,					,		,		,
	639 m	637w	624	βC17=	06	636	βC14=0	05	618	βC14=05	e	531	βC14=05	636	βR.(A5) 50309012	652	βC14=05
															00505011		
	609 w	605w	592	βR _± (A6	j]	605	βR _i (A6	1	595	βR:(A6)		504	βR:(A6)	616	τO4-H28	635	5C9C12C13
				βR _i (A6	ต					βR ₂ (A6)			βR ₁ (A6)				503C9C12
	560 m	560w	565	50001	2013	550	50201/	200	557	502C10N	7	52	50301007	603	80.(46)	605	80.(46)
	200111	50011	505	UCSCI	2015	550	00201		221	5N7C10C1	11		002010107	000	pro(A0)	005	per/wol
537 vw	550w	548	502C10	N7	548	5C9C12	2C13	491	503	C9C12	494		502C12-C13	561	503C9C12	564	SO3C9C12
			5N7C100	:11													
517 vw		516	τO4-H28	ŀ	483	5N7C1	0C11	463	502	C12-C13	487		5N7C10C11	520	502C10N7	521	βR:(A6)
491.554	487	445	502C12-	C13	442	50309	C11	419	-9./	461	440		-107-010	477	5N7C10C11	479	5N7C10C11
422.00	402.07		5030901	11		00505		-10	Cred.	,			10.010		0107020022	472	0117020011
482 vw	445w	431	τR _i (A6)		412	τR ₀ (A6)	408	βC1	7=06	405		βC17=06	438	τR.(A6)	429	τR ₁ (A6)
			503C9C1	11		- ···-											
	395w	409	tk⊮(A0j		399	βC17=	06	380	503	C9C11	384		7 C16-I1	403	βC17=06	408	βC17=06
	260	200	τR.(A6)		240			260			275			202		200	
	309W	390	pC14=03	2	349	7 C16 -0		309	7010	5-11	3/3		00509011	392	302012015	390	802012015
	332w	350	γ C16-I1		304	τ04-H	28	323	5C13	201304	313		SC12C13O4	343	503C9C11	351	503C9C11
		315	5O3-C9C	12	281	5O3-C9	9C12	274	-03	H25	276		=O4-H28	332	SC9C12C13		500013012
	291w												1041120		000012010	337	009012015
		292	±O3-H25		260	BN7-C	10	272	τO3-	H25	263		BN7-C10	290	5C12C13O4	337 297	5C12C13O4
		292	₹03-H25		260	βN7-C	10	272	τ03	-H25	263		βN7-C10	290	5C12C13O4	337 297	5C12C13O4
		292 270	τO3-H25 γN7-C10		260 252	βN7-C: γC16-I3	10 1	272 250	τ03 τ04	-H25 -H28	263 244		βN7-C10 τO3-H25	290 279	5C12C13O4 γC16-I1	337 297 276	5C12C13O4 γN7-C10
		292 270	τ03-H25 γN7-C10		260 252	βN7-C: γC16-I3 δC9C12	10 1 2C13	272 250	τ03 τ04	-H25 -H28	263 244		βN7-C10 τO3-H25 τC16-H1 5C3C9C12	290 279	5C12C13O4 γC16-I1 γN7-C10	337 297 276	5C12C13O4 7N7-C10 7C16-I1
	256w	292 270 241	τ03-H25 γN7-C10 δC12C13	104	260 252 233	βN7-C: γC16-I: δC9C1: βR ₄ (A6	10 1 2C13	272 250 224	τ03 τ04 509	-H25 -H28 C12C13	263 244 233		βN7-C10 τO3-H25 τC16-I1 δO3C9C12	290 279 237	5C12C13O4 γC16-I1 γN7-C10 τR.(A6)	337 297 276 271	5C12C13O4 γN7-C10 γC16-I1 τO3-H25
	256w	292 270 241	τ03-H25 γN7-C10 5C12C13	04	260 252 233	βN7-C1 γC16-H δC9C12 βR ₄ (A6	10 1 2C13	272 250 224	τ03 τ04 δ09	-H25 -H28 C12C13	263 244 233		607725 βN7-C10 τO3-H25 γC16-l1 δO3C9C12 τR.(A6)	290 279 237	5C12C13O4 γC16-I1 νN7-C10 τR.(A6)	337 297 276 271	5C12C13O4 γN7-C10 γC16-I1 τO3-H25
	256w 234w	292 270 241 223	τ03-H25 γN7-C10 δC12C13 τR.(A6)	04	260 252 233 217	βN7-C: γC16-I3 δC9C1: βR.(A6 τO3-H3	10 1 2C13 9) 25	272 250 224 217	२०३ २०४ २०४ २८९ २८९	-H25 -H28 C12C13 A6)	263 244 233 229		607.125 βN7-C10 τO3-H25 γC16-I1 δO3C9C12 τR ₁ (A6) τO3-H25	290 279 237 208	5C12C13O4 γC16-I1 νN7-C10 τR.(A6) νC16-I1	337 297 276 271 231	5C3C12C13O4 γN7-C10 νC16-l1 τO3-H25 τR.(A6)
	256w 234w	292 270 241 223	τ03-H25 γN7-C10 δC12C13 τR.(A6) γC16-I1	04	260 252 233 217	βN7-C: γC16-I) δC9C1: βR.(A6 τO3-H)	10 1 2C13 9) 25	272 250 224 217	τ03 τ04 5C90 τR ₁ (τR ₂ (-H25 -H28 C12C13 A6j A6j	263 244 233 229		pN7-C10 τO3-H25 τC16-I1 5O3C9C12 τR.(A6) τO3-H25	290 279 237 208	5C12C13O4 γC16-I1 νN7-C10 τR.(A6) νC16-I1	337 297 276 271 231	5C12C13O4 7N7-C10 7C16-11 7C3-H25 7R.(A6) 7R.(A6)
	256w 234w 210w	292 270 241 223 201	τ03-H25 γN7-C10 δC12C13 τR.(A6) γC16-I1 νC16-I1	04	260 252 233 217 206	βN7-C: γC16-I: δC9C1: βR.(A6 τO3-H: τR.(A6	10 1 2C13 1) 25	272 250 224 217 191	τ03 τ04 5C9 τR ₁ (τR ₁ () τR ₁ ()	-H25 -H28 C12C13 A6) A6) 5-11	263 244 233 229 196		pN7-C10 τO3-H25 τC16-I1 5O3C9C12 τR.(A6) τO3-H25 νC16-I1	290 279 237 208 200	5C12C13O4 γC16-I1 νN7-C10 τR _i (A6) νC16-I1 τO3-H25	337 297 276 271 231 215	5C12C13O4 γN7-C10 γC16-I1 τO3-H25 τR.(A6) τR.(A6) νC16-I1
	256w 234w 210w	292 270 241 223 201	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 νC16-I1	:04	260 252 233 217 206	βN7-C: γC16-I: βR.(A6 τO3-H0 τR.(A6 τR.(A6	10 1 2C13 9) 25	272 250 224 217 191	003 703 704 5090 78.(0 78.(0 78.(0	-H25 -H28 C12C13 A6) A6) 5-11	263 244 233 229 196		βN7-C10 τ03-H25 νC16-H 503C9C12 τR.(A6) τ03-H25 νC16-H	290 279 237 208 200	5C12C13O4 γC16-I1 +W7-C10 τR.(A6) νC16-I1 τO3-H25	337 297 276 271 231 215	5C12C13O4 γN7-C10 νC16-I1 τO3-H25 τR.(A6) τR.(A6) νC16-I1
	256w 234w 210w	292 270 241 223 201 187	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6)	104	260 252 233 217 206 193	βN7-C: γC16-I: βR.(A6 τO3-Hi τR.(A6 τR.(A6 νC16-I:	10 1 2C13 i) 25 i) 1	272 250 224 217 191 179	t03 t03 t04 5090 tR.(tR.(vC10 tR.(vC10 tR.(-H25 -H28 C12C13 A6) 5-11 A6)	263 244 233 229 196 189		βN7-C10 τ03-H25 *C16-H1 803C9C12 τR.(A6) τ03-H25 vC16-I1 τR.(A6)	290 279 237 208 200 198	5C12C13O4 γC16-I1 +W7-C10 τR.(A6) vC16-I1 τO3-H25 τR.(A6)	337 297 276 271 231 215 204	5C12C13O4 7N7-C10 vC16-11 tO3-H25 tR.(A6) tR.(A6) vC16-11 tR.(A6) tR.(A6)
	256w 234w 210w	292 270 241 223 201 187	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6)	104	260 252 233 217 206 193	βN7-C: γC16-I: βR.(A6 τO3-Hi τR.(A6 τR.(A6 νC16-I:	10 1 2C13)) 25) 1	272 250 224 217 191 179	t03 t03 t04 5090 tR.(tR.(v010 tR.(-H25 -H28 C12C13 A6) A6) 5-11 A6)	263 244 233 229 196 189		βN7-C10 τ03-H25 γC16-H1 503C9C12 τR.(A6) τC16-H1 τR.(A6)	290 279 237 208 200 198	5C12C13O4 γC16-I1 +N7-C10 τR.(A6) vC16-I1 τO3-H25 τR.(A6) τR.(A6)	337 297 276 271 231 215 204	5C12C13O4 7N7-C10 vC16-11 tO3-H25 tR.(A6) tR.(A6) vC16-11 tR.(A6) tR.(A6) tR.(A6)
	256w 234w 210w	292 270 241 223 201 187	τ03-H25 γN7-C10 δC12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6)	104	260 252 233 217 206 193	βN7-C: γC16-I: δC9C1: βR.(A6 τO3-HC τR.(A6 νC16-I: τR.(A6	10 1 2C13)) 25) 1 1	272 250 224 217 191 179	03 704 509 रR.(रR.(vCli रR.(रR.(-H25 -H28 C12C13 A6) 5-11 A6) A6)	263 244 233 229 196 189		βN7-C10 τ03-H25 τ03-H25 τ03-G12 τ8.(A6) τ03-H25 νC16-I1 τ8.(A6)	290 279 237 208 200 198	5C12C13O4 γC16-I1 +N7-C10 τR.(A6) vC16-I1 τO3-H25 τR.(A6) τR.(A6)	337 297 276 271 231 215 204	5C3C12C13 5C12C13O4 7N7-C10 +C16-11 tO3-H25 tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163	τO3-H25 γN7-C10 δC12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6)	04	260 252 233 217 206 193 179	βN7-C: γC16-1; SC9C1: βR.(A6 τO3-HC τR.(A6 τR.(A6 τR.(A6 τR.(A6	10 L 2C13) 25) 1 1	272 250 224 217 191 179 157	03 703 704 509 78.(78.(78.(78.(78.(-H25 -H28 C12C13 A6) A6) A6) A6) A6)	263 244 233 229 196 189 171		βN7-C10 τO3-H25 τO3-H25 τO3-G2012 τR.(A6) τO3-H25 τR.(A6) τR.(A6) τR.(A6)	290 279 237 208 200 198 192	5C12C13O4 γC16-11 +N7-C10 τR.(A6) vC16-11 τO3-H25 τR.(A6) τR.(A6) τR.(A6)	337 297 276 271 231 215 204 204	5C3C12C13 5C12C13O4 7N7-C10 -C16-11 tO3-H25 tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6)	04	260 252 233 217 206 193 179	βN7-C: γC16-1; δC9C1: βR.(A6 τR.(A6 τR.(A6 τR.(A6	10 1 2C13)) 25) 1 1	272 250 224 217 191 179 157	003 103 104 509 18.(18.(18.(18.(-H25 -H28 C12C13 A6) A6) A6) A6) A6)	263 244 233 229 196 189 171		pN7-C10 τO3-H25 ·C16-H1 SO3C9C12 τR.(A6) τC16-H1 τR.(A6) 5C9C12C13 -2.(A5)	290 279 237 208 200 198 192	5C12C13O4 γC16-11 +N7-C10 τR.(A6) vC16-11 τO3-H25 τR.(A6) τR.(A6) τR.(A6)	337 297 276 271 231 215 204 204	5C3C12C13 5C12C13O4 7N7-C10 vC16-11 tO3-H25 tR.(A6) vC16-11 tR.(A6) tR.(A6) tR.(A6) tR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163 125	τ03-H25 γN7-C10 δC12C13 τR.(A6) γC16-l1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	13	260 252 233 217 206 193 179 123	βN7-C: γC16-1; δC9C1; βR,(A6 τR,(A6 τR,(A6 τR,(A6 τR,(A6 τR,(A6 502C1;	10 1 2C13 7) 25 1 1 1 1 2-C13	272 250 224 217 191 179 157 125		-H25 -H28 C12C13 A6) A6) A6) A6) A6) A6)	263 244 233 229 196 189 171 171		βN7-C10 τO3-H25 νC16-11 503C9C12 τR.(A6) τC3-H25 νC16-11 τR.(A6) 5C9C12C13 τR.(A5)	290 279 237 208 200 198 192	5C12C13O4 γC16-11 +N7-C10 +R.(A6) vC16-11 τO3-H25 +R.(A6) +R.(A6) +R.(A6) +R.(A6) +R.(A6)	337 297 276 271 231 215 204 204 204	5C3C12C13 5C12C13O4 7N7-C10 vC16-I1 tO3-H25 tR.(A6) vC16-I1 tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163 125	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	13	260 252 233 217 206 193 179 123	βN7-C: γC16-1; δC9C1; βR.(A6 τR.(A6 τR.(A6 τR.(A6 τR.(A6 τR.(A6 502C1	10 1 2C13) 25) 1 1) 2-C13	272 250 224 217 191 179 157 125		-H25 -H28 C12C13 A6) A6) A6) A6) A6) A6)	263 244 233 229 196 189 171 121		βN7-C10 τO3-H25 ~C16-11 503C9C12 τR.(A6) τO3-H25 vC16-11 τR.(A6) 5C9C12C13 τR.(A5) τR.(A5)	290 279 237 208 200 198 192 174	5C12C13O4 7C16-11 +N7-C10 +R.(A6) vC16-11 tO3-H25 tR.(A6) tR.(A6) tR.(A6) tR.(A6) twC12-C13	337 297 276 271 231 215 204 204 172	5C12C13O4 γN7-C10 vC16-I1 τO3-H25 τR.(A6) vC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163 125	τO3-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	13	260 252 233 217 206 193 179 123	βN7-C: γC16-1: SC9C1: βR.(A6 τR.(A6 τR.(A6 τR.(A6 τR.(A6 τR.(A6 502C1	10 1 2013 0) 25 1 1 1 2-013	272 250 224 217 191 179 157 125	ರು ಕರಿತ ಕರಿತ ಕನ್ನ ಕನ್ನ ಕನ್ನ ಕನ್ನ ಕನ್ನ ಕನ್ನ	-H25 -H28 C12C13 A6) A6) A6) A6) A6) A5)	263 244 233 229 196 189 171 121		βN7-C10 τO3-H25 νC16-11 5O3C9C12 τR.(A6) τO3-H25 νC16-11 τR.(A6) 5C9C12C13 τR.(A5) τR.(A5)	290 279 237 208 200 198 192 174	5C12C13O4 7C16-11 -N/7-C10 -R.(A6) vC16-11 tO3-H25 tR.(A6) tR.(A6) tR.(A6) twC12-C13	337 297 276 271 231 215 204 204 172	5C12C13O4 γN7-C10 vC16-11 τO3-H25 τR.(A6) vC16-11 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163 125	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	13	260 252 233 217 206 193 179 123	βN7-C: γC16-1: SC9C1: βR.(A6 τO3-HC τR.(A6 τR.(A6 τR.(A6 τR.(A6 502C1	10 1 2013)) 225) 1 1) 1 2-013	272 250 224 217 191 179 157 125		-H25 -H28 C12C13 A6) A6) A6) A6) A6)	263 244 233 229 196 189 171 121		pN7-C10 τO3-H25 νC16-11 sO3C9C12 τR.(A6) τO3-H25 νC16-11 τR.(A6) sC9C12C13 τR.(A5) τR.(A5)	290 279 237 208 200 198 192 174	5C12C13O4 7C16-11 -N/7-C10 -R.(A6) vC16-11 tO3-H25 tR.(A6) tR.(A6) tR.(A6) twC12-C13	337 297 276 271 231 215 204 204 172	5C12C13O4 γN7-C10 vC16-11 τO3-H25 τR.(A6) vC16-11 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163 125	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	104	260 252 233 217 206 193 179 123	βN7-C: γC16-1: βR ₄ (A6 τO3-HC τR ₄ (A6 τR ₄ (A6 τR ₄ (A6 τR ₄ (A6 δO2C1	10 L 2C13)) 1] 2-C13 1	272 250 224 191 179 157 125		-H25 -H28 C12C13 A6) 5-11 A6) A6) A5) A5) A5)	263 244 233 229 196 189 171 121	β	pN7-C10 τ03-H25 vC16-11 SO3C9C12 τR.(A6) τO3-H25 vC16-11 τR.(A6) SC9C12C13 τR.(A5) τR.(A5) c16-11	290 279 237 208 200 198 192 174	5C12C13O4 7C16-11 -N/7-C10 TR.(A6) vC16-11 TO3-H25 TR.(A6) TR.(A6) TR.(A6) TR.(A6) TR.(A6) TR.(A6)	337 297 276 271 231 215 204 204 172	5C12C13O4 γN7-C10 +C16-11 τO3-H25 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)
	256w 234w 210w 162w	292 270 241 223 201 187 163 125	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	104	260 252 233 217 206 193 179 123 7	βN7-C: γC16-1: βR ₁ (A6 τO3-HC τR ₂ (A6 τR ₁ (A6) 502C1	10 L 2C13)) 1]] 2-C13	272 250 224 217 191 179 157 125	003 003 004 5090 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 028.(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-H25 -H28 (12C13 A6) 6-11 A6) A6) A6) A5) 10 1	263 244 233 229 196 189 171 121	β	pN7-C10 τ03-H25 vC16-I1 τR ₁ (A6) τ03-H25 vC16-I1 τR ₁ (A6) 5C9C12C13 τR ₁ (A5) τR ₁ (A5) tR ₁ (A5)	290 279 237 208 200 198 192 174	5C12C13O4 γC16-l1 +N/7-C10 τR.(A6) vC16-l1 τO3-H25 τR.(A6) τR.(A6) τR.(A6) τwC12-C13 τR.(A6)	337 297 276 271 231 215 204 204 172	5C3C12C13O4 7N7-C10 vC16-11 tO3-H25 tR.(A6) vC16-11 tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A5) tR.(A5)
	256w 234w 210w 162w 10 90	292 270 241 223 201 187 163 125 09	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A5)	104 113 10 84	260 252 233 217 206 193 179 123	<pre>pN7-C: yC16-1: bC9C12: pR_(A6 τO3-H2 τR_(A6 τR_(A6 τR_(A6 502C1 pC16-11 τR_(A6)</pre>	10 1 2C13) 225) 1 2-C13 1 8	272 250 224 217 191 179 157 125 14	03 τ04 509 τR.(τR.(τR.(τR.(τR.(τR.(τR.(τR.(-H25 -H28 C12C13 A6) 5-11 A6) A6) A6) A5) 10 1 9	263 244 233 229 196 189 171 121 09	β	pN7-C10 τ03-H25 γC16-H1 \$503C9C12 τR.(A6) τC3-H25 νC16-H1 τR.(A6) δC9C12C13 τR.(A5) τR.(A5) C16-H1	290 279 237 208 200 198 192 174	5C12C13O4 γC16-11 +N7-C10 τR.(A6) vC16-11 τO3-H25 τR.(A6) τR.(A6) τR.(A6) τR.(A6) tR.(A6) cR.(A6) cR.(A6)	337 297 276 271 231 215 204 204 172 139	5C3C12C13O4 γN7-C10 γC16-11 τO3-H25 τR ₁ (A6) τR ₂ (A6)
	256w 234w 210w 162w 10 90	292 270 241 223 201 187 163 125 29	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	104 113 10 84	260 252 233 217 206 193 179 123	βN7-C: γC16-1: βR ₄ (A6 τO3-HC τR ₄ (A6 τR ₄ (A6 τR ₄ (A6 δ02C1 βC16-11 τR ₄ (A6) γN7-C10	10 1 2c13) 225) 1 2-c13 1 2-c13	272 250 224 191 179 157 125 14 9	τ03 τ04 509 τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(.	-H25 -H28 C12C13 A6) 5-11 A6) A6) A6) A6) 10 1 1 9	263 244 233 229 196 189 171 121 09	β	pN7-C10 τ03-H25 ×C16-H1 503C9C12 τ8.(A6) τ03-H25 vC16-H1 τ8.(A6) 509C12C13 τ8.(A5) τ8.(A5) c16-H1 :: xC12-C13 ::	290 279 237 208 200 198 192 174	5C12C13O4 γC16-11 +N7-C10 τR.(A6) vC16-11 τO3-H25 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) βC16-11 βN7-C10	337 297 276 271 231 215 204 204 172 139	5C3C12C13 5C12C13O4 γN7-C10 +C16-11 τO3-H25 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A5) βC16-11 βN7-C10
	256w 234w 210w 162w 10 90 81	292 270 241 223 201 187 163 125 29	τO3-H25 γN7-C10 δC12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	104 113 10 84 68	260 252 233 217 206 193 179 123 7	βN7-C: γC16-1: βR ₁ (A6 τO3-H) τR ₁ (A6 τR ₁ (A6 τR ₁ (A6 502C1 βC16-11 τR ₁ (A6) γN7-C10 τR ₁ (A6)	10 1 2c13) 25) 1 2-C13 1 1 2-C13 3 7	272 250 224 191 179 157 125 14 9	τ03 τ04 δ69 τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(.	-H25 -H28 C12C13 A6) A6) A6) A6) A6) A6) 10 1 9 -C13 7	263 244 233 229 196 189 171 121 09 7	β	pN7-C10 τO3-H25 ×C16-I1 503C9C12 τR.(A6) τO3-H25 vC16-I1 τR.(A6) 509C12C13 τR.(A5) τR.(A5) C16-I1 : R.(A5) C16-I1 : R.(A5)	290 279 237 208 200 198 192 174 139 111 87	5C12C13O4 γC16-11 +N7-C10 τR.(A6) vC16-11 τO3-H25 τR.(A6) τR.(A6) τR.(A6) τR.(A6) tR.(A6) βC16-11 βN7-C10 τR.(A5)	337 297 276 271 231 215 204 204 172 139 110 90	5C3C12C13 5C12C13O4 γN7-C10 -C16-11 τO3-H25 TR.(A6) τR.(A6) TR.(A6)
	256w 234w 210w 162w 10 90 81	292 270 241 223 201 187 163 125 09	τO3-H25 γN7-C10 δC12C13 τR.(A6) γC16-11 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6] τR.(A5) τR.(A5)	1004 113 10 84 68	260 252 233 217 206 193 179 123 7	βN7-Cl γC16-13 SC9C12 βR.(A6 τO3-HC τR.(A6 τR.(A6 τR.(A6 502C1 βC16-11 τR.(A6) γN7-Cl0 τR.(A6)	10 1 2c13) 25) 1 2-c13 1 8 7	272 250 224 191 179 157 125 14 9	τ03 τ04 δ69 τR.(.)))))))))))))))))))))))))))))))))))	-H25 -H28 C12C13 A6) A6) A6) A6) A6) A6) 10 1 9 -C13 7	263 244 233 229 196 189 171 121 09 7	β τ. τ	pN7-C10 τO3-H25 ×C16-11 SO3C9C12 τR.(A6) τO3-H25 vC16-11 τR.(A6) SC9C12C13 τR.(A5) C16-11 : R.(A6) :	290 279 237 208 200 198 192 174 139 111 87	5C12C13O4 γC16-11 +N7-C10 τR.(A6) τO3-H25 τR.(A6) τR.(A6) τwC12-C13 τR.(A6)	337 297 276 271 231 215 204 204 172 139 110 90	5C3C12C13 5C12C13O4 γN7-C10 +C16-11 τO3-H25 TR.(A6) τR.(A6) TR.(A5)
	256w 234w 210w 162w 10 90 81 56	292 270 241 223 201 187 163 125 09 0	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τwC12-C βC16-I1 τR.(A5) τR.(A5) τR.(A6)	104 113 10 84 68 59	260 252 233 217 206 193 179 123 7	<pre>pN7-Cl γC16-13 SC9C12 pR_(A6 τO3-HC τR_(A6 τR_(A6 τR_(A6 SO2C1 pC16-11 τR_(A6) γN7-Cl0 τR_(A6) τR_(A6) τR_(A6) τR_(A6) τR_(A6)</pre>	10 1 2c13) 25) 1 1 2-c13 1 8 7 7 3 5	272 250 224 191 179 157 125 14 9 4	τ03 τ04 569 τR.(. τR.(. τR.(. τR.(. τR.(. γN7-C1 βC16-I τwC12 τR.(A6	-H25 -H28 C12C13 A6) A6) A6) A6) A6) A5) 10 1 1 9 -C13 7 5	263 244 233 229 196 189 171 121 09 7 7	β τ τ	pN7-C10 τO3-H25 ·C16-I1 SO3C9C12 τR.(A6) τO3-H25 ·C16-I1 τR.(A6) SC9C12C13 τR.(A5) C16-I1 : R.(A5) : R.(A5) : : : : : : : : : : : : :	290 279 237 208 200 198 192 174 139 111 87 55	5C12C13O4 γC16-11 +N7-C10 τR.(A6) vC16-11 τO3-H25 τR.(A6) τR.(A6) τwC12-C13 τR.(A6) τR.(A5) τR.(A5) τR.(A5) τR.(A5) τR.(A5)	337 297 276 271 231 215 204 204 172 139 110 90 58	5C3C12C13 5C12C13O4 γN7-C10 vC16-11 τO3-H25 τR.(A6) vC16-11 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A5) βC16-11 βN7-C10 τR.(A5) τR.(A5) τR.(A5) τR.(A5)
	256w 234w 210w 162w 10 90 81 56	292 270 241 223 201 187 163 125 09 0	τO3-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τwC12-C βC16-I1 τR.(A5) τR.(A5) τR.(A6)	1004 113 10 84 68 59	260 252 233 217 206 193 179 123 7	pN7-Cl γC16-13 SCSC12 pR,(A6 τO3-HC τR,(A6 τR,(A6 τR,(A6 5O2C1 pC16-11 τR,(A6) γN7-Cl0 τR,(A6) τR,(A5)	10 L 2013) 225) 1 2-013 1 8 7 7 3 5	272 250 224 191 179 157 125 14 9 4 6	τ03 τ04 569 τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. γN7-C1 τwC12 τR.(A6 γN7-C1	-H25 -H28 C12C13 A6) A6) A6) A6) A6) A6) A6) A6)	263 244 233 229 196 189 171 121 09 77 78	β τ τ	pN7-C10 τO3-H25 vC16-11 SO3C9C12 τR.(A6) τO3-H25 vC16-11 τR.(A6) SC9C12C13 τR.(A5) C16-11 : wC12-C13 : R.(A6) :	290 279 237 208 200 198 192 174 139 111 87 55	5C12C13O4 γC16-11 +N/7-C10 +R.(A6) vC16-11 τO3-H25 tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A6) tR.(A5) tR.(A5) tR.(A5)	337 297 276 271 231 204 204 172 139 110 90 58	5C12C13O4 γN7-C10 vC16-I1 τO3-H25 τR.(A6) vC16-I1 τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A6) τR.(A5) βC16-I1 βN7-C10 τR.(A5) τR.(A5)
	256w 234w 210w 162w 10 90 81 56 30	292 270 241 223 201 187 163 125 09 0 1 5	τ03-H25 γN7-C10 5C12C13 τR.(A6) γC16-I1 τR.(A6) τR.(A6) τR.(A6) τwC12-C βC16-I1 τR.(A5) τR.(A6) τR.(A6) τR.(A6) τR.(A6)	1004 113 10 84 68 59 41	260 252 233 217 206 193 179 123 7	<pre>pN7-Cl γC16-ll SC9C11 pR_(A6 τO3-HL τR_(A6 τR_(A6 τR_(A6 τR_(A6 502C1 τR_(A6) τR_(A6) τR_(A6) τR_(A6) τR_(A6) τR_(A6) τR_(A5) τwC10-N7</pre>	10 L 2013) 25) 1 1 2-013 1 8 7 3 5 7 3 5	272 250 224 191 179 157 125 14 9 4 6 4	τ03 τ04 509 τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(. τR.(.)))))))))))))))))))))))))))))))))))	-H25 -H28 C12C13 A6) 5-11 A6) A6) A6) A6) A5) 10 1 9 -C13 7 1 5 10 3	263 244 233 196 189 171 121 09 7 7 8	β. τ. τ. τ. τ.	pN7-C10 τO3-H25 vC16-11 SO3C9C12 τR.(A6) τO3-H25 vC16-11 τR.(A6) SC9C12C13 τR.(A5) C16-11 : wC12-C13 : R.(A6) : R.(A5) :	290 279 237 208 200 198 192 174 139 111 87 55 33	5C12C13O4 γC16-11 +N/7-C10 +R.(A6) vC16-11 τO3-H25 τR.(A6) τR.(A6) τwC12-C13 τR.(A6) pC16-11 βN/7-C10 τR.(A5) τR.(A5) τR.(A5) τR.(A5)	337 297 276 271 231 204 204 172 139 110 90 58 32	5C3C12C13 5C12C13O4 γN7-C10 +C16-11 τO3-H25 TR.(A6) τR.(A6) TR.(A6) TR.(A6) TR.(A6) TR.(A6) TR.(A5) FR.(A5) FR.(A5) TR.(A5) TR.(A5) TR.(A5) TR.(A5) TR.(A5)

 \Box , stretching; \Box , scissoring; wag, wagging or out of plane deformation; \Box , rocking; \Box , torsion; twist, twisting; a, antisymmetric; s, symmetric; ip, in-phase; op, out-of-phase; R, ring; pyrimidine ring, (A6); sugar ring, (A5)

^aThis work, ^bFrom Ref [51], ^cFrom Ref [52], ^dFrom Ref [53], ^{e,f}From scaled quantum mechanics force field B3LYP/Lanl2dz, ^gFrom scaled quantum mechanics force field B3LYP/3-21G*

Table 4. Scaled harmonic force constants for the stable conformers of in gas and aqueous solution phases by using

Idoxuridine		Zalzitał	oine ^b							
Force constant	B3LYF	P/LanL2	dz		B3LYP/	'3-21G*	B3LYP/6-31G*			
	Gas		PCM		Gas	Gas PCM		Gas		
	C4	C5	C4	C5	C5	C5	C1	C2	C1	C2
f(vO-H)	6.98	6.94	6.99	7.01	6.12	5.79	7.15	7.17	7.14	7.19
f(vN-H)	6.63	6.63	6.49	6.53	6.38	6.24	6.79	6.82	6.78	6.74
$f(vC-H)_{A6}$	5.39	5.41	5.37	5.38	5.38	5.41	5.30	3.48	5.38	5.31
$f(vC-H)_{A5}$	4.85	4.89	5.04	5.04	4.84	4.97	4.80	4.65	4.84	4.74
f(vC=C)	7.77	7.80	7.77	7.79	7.99	7.80	7.83	7.97	7.92	8.07
f(vC=O)	9.79	9.81	8.75	8.73	10.74	10.00	11.30	11.45	9.72	9.99
$f(vC-O)_{A5}$	3.94	3.92	3.68	3.71	4.01	3.96	4.36	4.47	4.68	4.27
$f(vC-O)_{OH}$	4.39	4.18	4.23	4.23	4.45	4.27	5.18	5.09	4.83	4.79
f(vC-N)	5.26	5.28	5.39	5.39	5.04	5.13	5.99	6.01	6.06	6.09
$f(vC-C)_{A6}$	4.87	4.85	5.16	5.17	4.62	4.85	5.57	5.55	5.73	5.73
$f(vC-C)_{A5}$	3.97	4.02	4.04	4.04	3.90	3.94	3.96	3.96	3.98	3.97
f(δH-C-H)	0.74	0.76	0.70	0.74	0.81	0.80	0.76	0.54	0.74	0.74
$f(\delta C - O - H)$	0.75	0.80	0.79	0.79	0.96	1.03	0.83	0.82	0.79	0.75

 ν , stretching; δ , angle deformation. Units in mdyn Å⁻¹ for stretching and mdyn Å rad ⁻² for angle deformations ^aThis work

^bFrom Ref [54]