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ABSTRACT  

A method of constructing equireplicate Variance Balanced 

(VB) and Efficiency Balanced (EB) design with unequal 

block sizes is proposed using 3
n
-symmetrical factorial design 

with illustration. The method suggested here is based on 

merging some of the treatment combinations and deleting 

control and some other unimportant treatment combinations 

in 3
n
-factorial design. Further optimality of the constructed 

design has been checked and found it to be universally 

optimal. 
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1 INTRODUCTION 

We always need to setup a design in such a way that the variability in response due to 

uncontrolled variables (sometimes called experimental error) is less. We also want designs 

which are efficient, i.e., designs where we can answer the questions of interest with a 

minimal amount of data because of the expense associated with data collection. Especially in 

agricultural experiments, we preferred incomplete block designs when experimental units are 

very large. In many experimental situations, it is a severe restriction that all blocks in the 

experiment are of the same size. Variance Balanced (VB) designs forms a class of designs 

that are flexible extensions to balanced incomplete block designs. They provide the ability to 

design an experiment with equal precision among all pairwise comparisons, without being 

restricted to equal block size and equal replication of the treatments. 

The importance of VB designs in the context of experimental material is well known as it 

yields optimal design apart from ensuring simplicity in the analysis. Many practical 

situations demand designs with varying block sizes (Pearce [1964]), or resolvable VB 

designs with unequal replications (Kageyama [1976], Mukerjee and Kageyama [1985]). 

Rao [1958] gave the necessary and sufficient condition for a block design to be variance-

balanced. Pearce [1964] observed that it is sufficient to ensure the constancy of off-diagonal 

elements of the matrix C (= R – NK
-1

N’) for a design to have variance balance. Hedayat and 

Federer [1974] defined that a design is said to be VB if every normalized estimable linear 

function of treatment effect can be estimated with the same precision. Designs require an 

equal number of replications on all the treatments and equal block sizes. These two 

conditions were relaxed with the introduction of new class of balanced designs called VB 

designs. 

A block design is called variance-balanced if and only if 

1. It permits the estimation of all normalized treatment contrasts with the same variance. 

2. If the information matrix for treatment effects C = R – NK
–1

N’ satisfies C = ψ [Iν – (1/ ν ) 

1ν1ν’]. 

Where ψ is the unique nonzero eigenvalue of the matrix C with the multiplicity (v – 1), Iv is 

the v × v identity matrix.  

Hedayat and Federer [1974], Khatri [1982], Agarwal and Kumar [1984, 1985] have provided 

several methods for construction of VB designs. Kageyama [1988] gave some methods for 
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constructing block designs with unequal treatment replications and unequal block sizes. Das 

and Ghosh [1985] have defined generalized efficiency balanced (GEB) designs which 

include both, VB as well as efficiency balanced (EB) designs. Ghosh et al. [1992] gave 

methods to construct binary and non-binary VB design.  

The concept of efficiency balanced (EB) was introduced by Jones [23] and the nomenclature 

“efficiency balance” is due to Puri and Nigam [1975], Williams [1975]. Calinski [1971], Puri 

and Nigam [1975] established a sufficient condition for a design to be efficiency balanced is 

that its M matrix.  

A block design is called efficiency balanced if  

1. Every contrast of treatment effects is estimated through the design with the same 

efficiency factor. 

2. nrJIM /)1( '
   ; (See Caliski [1971]) 

Where μ is the unique non zero eigenvalue of M with multiplicity (1-ν).  For the EB block 

design N, the information matrix C is given as C = (1- μ) (R – (1/n) r r'); (see Kageyama 

[1974]). 

Mukerjee and Saha [1990] derived some optimality results on efficiency balanced designs. 

Gupta et al. [1983] gave a method for constructing general efficiency balanced designs with 

equal and unequal block sizes. Gupta [1992] gave a method for constructing efficiency 

balanced designs through BIB and GD designs. Ghosh et al. [1994] introduced efficiency 

balanced and variance-balanced ternary block designs. Ceranka and Graczyk [2009] 

discussed some problems for a class of EB block design based on balanced incomplete block 

designs with repeated blocks. Sun and Tang [2010] gave the efficiency balanced designs and 

their constructions. 

The idea of merging the levels of factors was exploited by Addelman [1962] to construct 

orthogonal resolution-III plans for symmetrical and asymmetrical factorial experiments. The 

effect of merging of treatments in block designs was studied by Pearce [1971] and it was 

shown that merging of treatments in general leads to an increase in precision of the resulting 

design if the merging has any effect. 

In a given class of designs, one should attempt to choose a design which is good according to 

some well-defined statistical criterion. This has led to the study of optimality of experimental 

designs. Optimal designs are experimental designs that are generated based on a particular 
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optimality criterion and are generally optimal only for a specific statistical model. The 

optimality of a design depends on the statistical model and is assessed with respect to a 

statistical criterion, which is related to the variance-matrix of the estimator.  

Kiefer [1958] introduced Balanced Block Designs (BBD) as a generalization of Balanced 

Incomplete Block (BIB) designs and proved the A-, D- and E-optimality of BBD’s in D (v, b, 

k), where D (v, b, k) is the class of all connected block designs with v treatments, b blocks, 

and constant block size k.  

Let CP denote the class of all acceptable designs with reference to P. CP consists of only 

connected designs. For any design d CP; let Vd denote the dispersion matrix, using d. Then 

A- optimality A design *d CP is said to be A-optimal in CP if 

)V()V( dd* trtr   

i.e. A-optimality criterion seeks to minimize the trace of the inverse of the information 

matrix. This criterion results in minimizing the average variance of the estimates of the 

regression coefficients. 

D- optimality A design *d CP is said to be D-optimal in CP if 

)V(det)V(det dd*   

i.e. D-optimality criterion seeks to minimize |(X'X)
−1

|, or equivalently maximize 

the determinant of the information matrix X'X of the design. 

E- optimality A design *d CP is said to be E-optimal in CP if 

)(max)(max dd*    

i.e. E-optimality criterion seeks to maximize the minimum eigenvalue of the information 

matrix. 

In fact, Subsequently, Kiefer [1975] proved a stronger result regarding the optimality of 

balanced block designs, by introducing the concept of universal optimality of BBD’s in D (v, 

b, k). He obtained a sufficient condition for universal optimality and proved that the balanced 

block design (if it exists) is universally optimal in the class of all connected designs. If a 

design is A-, D- and E-optimal then it is universally optimal as well and a vice a versa. 

http://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Information_matrix
https://en.wikipedia.org/wiki/Eigenvalue
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Although a considerable amount of work is available on optimality of designs in D (v, b, k), 

not much appears to have been done on the optimality of designs with unequal block sizes, 

except by Lee and Jacroux [1987a,b,c], Dey and Das [1989], Gupta and Singh [1989], Gupta 

et al. [1991]. 

Factorial experiments are experiments that investigate effects of two or more factors or input 

parameters on the output response of a process. It involves simultaneously more than one 

factor each at two or more levels. Several factors affect simultaneously the characteristic 

under study in factorial experiments and the experimenter is interested in the main effects 

and the interaction effects among different factors. Experiments, in which the numbers of 

levels of all the factors are same, are called symmetrical factorial experiments. A 

full factorial experiment is an experiment whose design consists of two or more factors, each 

with discrete possible values or "levels", and whose experimental units take on all possible 

combinations of these levels across all such factors. 

If there are k factors, each at 3 levels, a full factorial design has 3
k
-runs. The three-level 

design is written as a 3
k
-factorial design. It means that k factors are considered, each at 3 

levels. These are (usually) referred to as low, intermediate and high levels. These levels are 

numerically expressed as 0, 1, and 2. A third level for a continuous factor facilitates 

investigation of a quadratic relationship between the response and each of the factors. A 

design with all possible high/intermediate/low combinations of all the input factors is called a 

3
k
-symmetric full factorial design in three levels. 

Rajarathinam et al. [2014, 2016] gave the construction of unequal block sizes and equi-

replicated binary variance-balanced and efficiency balanced designs from symmetrical 2
n
-

factorial design. Since they delete the control treatment and merged all the main effects and 

considered them as one block in the first method (See Rajarathinam et al. [2014]) and in the 

second method delete the control treatment as well as all the main effects in 2
n
-factorial 

design (See Rajarathinam et al. [2016]). Here in our research, we construct equi-replicated 

binary variance-balanced and efficiency balanced designs from symmetrical 3
n
-factorial 

design with unequal block sizes. The constructed designs discussed here based on merging 

first highest order linear effect with each first level main effects separately and deleting 

control and some other unimportant treatment combinations in 3
n
-factorial design which are 

of less important in the practical point of view.  

 

https://en.wikipedia.org/wiki/Experimental_unit
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2 METHOD OF CONSTRUCTION 

Let as consider a 3
n
-factorial design. There are 3

n
-treatment combinations where n-first level 

main effects and n-second level main effects are there in the design. Now delete the control 

treatment as well as n-second level main effects and merge the first highest order linear effect 

with each first level main effects separately. Thus we get [3
n 

- (n+1)] treatment combinations. 

Now consider these [ 3
n 

- (n+1)] treatment combinations as blocks for the required design 

with unequal (varying) block sizes. 

For example, let n = 3, Then in 3
3
-factorial experiment there are 3

3
 = 27 treatment 

combinations in all, which are as follows  

“1” = 0  0 0 

a = 1  0  0 

b = 0  1  0 

c = 0  0  1 

bc = 0  1  1 

ac = 1  0 1 

ab = 1  1  0 

abc = 1  1  1 

a
2
 = 2 0 0 

b
2
 = 0 2 0 

c
2
 = 0 0 2 

a
2
b

2
 = 2 2 0 

a
2
c

2
 = 2 0 2 

b
2
c

2
 = 0 2 2 

a
2
b

2
c

2
 = 2 2 2 

a
2
b = 2 1 0 

ab
2
 = 1 2 0 

a
2
c = 2 0 1 

b
2
c = 0 2 1 

ac
2
 = 1 0 2 

bc
2
 = 0 1 2 

a
2
bc = 2 1 1 

ab
2
c = 1 2 1 

abc
2
 = 1 1 2 

a
2
b

2
c = 2 2 1 

a
2
bc

2
 = 2 1 2 

ab
2
c

2
 = 1 2 2 
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Delete a treatment combination whose levels of all factors are zero i.e. delete the control 

treatment. Also, delete the treatment combinations where the level of only one factor is two 

while the levels of the other factors are zero i.e. all the quadratic (second level) main effects. 

Next merge the first (intermediate) level highest order linear treatment combination with 

each first level main effect i.e. the treatment combination where the level of only one factor 

is one while the levels of the other factors are zero, separately. Here there are three first level 

linear main effects in 3
3
-factorial experiment. The remaining treatment combinations remain 

as it is. Thus we get  

1  1  0 

1  0 1 

0  1  1 

1  1  1 

2 1 1 

1 2 1 

1 1 2 

2 2 0 

2 0 2 

0 2 2 

2 2 2 

2 1 0 

1 2 0 

2 0 1 

0 2 1 

1 0 2 

0 1 2 

2 1 1 

1 2 1 

1 1 2 

2 2 1 

2 1 2 

1 2 2 
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Finally we get 3
3
-(3+1) = 23 treatment combinations. Now transposing all the treatment 

combinations and treated them as blocks; we get the incidence matrix of variance-balanced 

and efficiency balanced design, with block sizes 2, 3, 4, 5 and 6 respectively.  

Theorem 2.1 The existence of 3
n
- symmetric factorial experiment implies the existence of 

equi-replicated variance-balanced and efficiency balanced design with unequal block sizes, 

having parameters             

ν
* 
=  n,    b

* 
= 3

n 
–(n+1),    r

* 
= 3

n 
+ (n-2),    k

* 
=  [2,2,….,2; 3,3,….,3; ……; n, n,…., n; (n+1), 

(n+1),…., (n+1); (n+2), (n+2),…., (n+2); ……; (n+n), (n+n),…., (n+n)]  

Proof In 3
n
-symmetric factorial experiment, there are 3

n
- treatment combinations in all. 

Considering “n” factors as rows and 3
n
-treatment combinations as columns. Now delete the 

control treatment and the treatment combinations where the level of only one factor is two 

while the levels of the other factors are zero i.e. all the quadratic (second level) main effects. 

Next merge the first (intermediate) level highest order linear treatment combination with 

each first level main effect separately, we get the [3
n
–(n+1)] treatment combinations (which 

are treated as blocks); then incidence matrix N
*
 of design D

*
 with unequal block sizes is 

given as  






























  

  

























  




































  


















  



















EffectLinear

eractionfactornwitheffects
mainoftomergingdueoccursblocksC

eractionfactorneractionfactorneractionfactoreractionfactor

n

N

intintint)1(int3int2

*

1

211

111

111

111

121

112

1

1

1

1

1

1

110

101

111

111

111

011

100

100

100

001

011

011

100

100

000

010

001

011
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

  







  




































  


















  



















EffectQuadratic

eractionfactorneractionfactorneractionfactoreractionfactor intint)1(int3int2

2

2

2

2

2

2

220

202

222

222

222

022

200

200

200

002

022

022

200

200

000

020

002

022



 

























  

  








































































  




































  



















EffectQuadraticLinear

eractionfactorneractionfactoreractionfactor intint3int2

221

212

222

222

222

122

211

211

111

121

112

122

211

111

111

111

121

112

20

20

10

01

02

02

200

100

100

001

011

022

200

100

000

020

001

022

(2.1) 

Since in N
*
; there are “n” rows. Considering these n-rows as treatments, we have ν

* 
= n.  

In incidence matrix N
*
, for linear effect, among 

n
c2 columns, in each column, element one 

occurs 
n-1

c1 times while zero occurs (n-2) times, among 
n
c3 columns, element one occurs 

n-1
c2  

while zero occurs (n-3) times in each column and so on. Also due to merging of blocks, 
n
c1 

columns are obtained in which one occurs (n-1) times and two occurs once. For quadratic 

effect, among 
n
c2 columns, in each column, element two occurs 

n-1
c1 times while zero occurs 

(n-2) times, among 
n
c3 columns, element one occurs 

n-1
c2 while zero occurs (n-3) times in 

each column and so on. While 
n
c1 columns having high-level main effects were deleted. For 

linear and quadratic effect, in two-factor interaction, among 2×
n
c2 columns, in each column, 

elements one and two occur 
n-1

c1 times while zero occurs (n-1) (n-2) times; in three-factor 

interaction, among 6×
n
c3 columns, elements one and two occur 3×

n-1
c2 times while zero 

occurs (n-1) (n-2) (n-3) times in each column and so on. 

Thus we get 
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













































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Also in N
*
; In linear effect, 

n
c2 blocks have block size 2, 

n
c3 blocks have block size 3, and so 

on and due to merging of blocks 
n
c1 blocks have block size (n+1). In quadratic effect, 

n
c2 

block have block size 4, 
n
c3 blocks have block size 6, and so on. In linear + quadratic effect, 

2×
n
c2 blocks have block size 3, 6×

n
c3 blocks have block sizes 4, 5 respectively and (2

n
-2) 

blocks have block sizes (n+1), (n+2), ……(n+n).  Thus 
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Since we have considered rows as treatments and columns as blocks. In N
*
 there are ν

*
 = n 

treatments and b
*
= [3

n 
- (n+1)] blocks. In each row, one occurs (3

n-1 
+ n -2) times and two 

occurs 3
n-1 

times. Thus row sum becomes 
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Now calculation of variance and efficiency can be done as follows  

Since a block design is variance-balanced iff  
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                                                                               (2.2) 

Where, * is the unique non-zero eight value of the C -matrix with multiplicity (v-1). 

The C-matrix for the design having incidence matrix given in (2.2) can be written as  
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Comparing (2.2) and (2.3) 

                                                      n*
                                                   (2.5) 

Hence the incidence matrix defined in eq. (2.1) of design D
*
 gives equi-replicated variance 

balanced with unequal block sizes.  

We know that M-matrix is defined as  

                                                  M = I – R
-1

 C                              (2.6) 
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After simplification we get,  
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Since MJ = J, where J is the unit vector of order (v×1).  

Also, M-matrix is given as  
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                          (2.8)                                                                  

Where, μ
*
 is the loss of information, Iv is the identify matrix of order (ν×ν), Jv is unit vector 

of order (ν×1) and 
i

ir
* is the total number of observations.  

On simplification we get 
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Comparing (2.7) and (2.9) we get,  
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                                                                      (2.10) 

Where, θ is defined in (2.4). 

Thus the design is efficiency balanced with unequal block sizes.  

Example 2.1 Let n=3, then in 3
3
-factorial design; theorem 2.1 yields an incidence matrix N

*
 

as given below 
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Here,  

         ν
* 
=  3,    b

* 
= 23,    r

* 
= 28,    6;5....,,5;4....,,4;3,....,3;2....,,2* k       

The C- matrix for the design having incidence matrix given above can be written as  
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Also, we know that 
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Where * is the unique non-zero eight value of the C-matrix with multiplicity 2. 

Comparing (2.11) and (2.12) 
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                                                                                    (2.13) 

Thus the design is Variance balanced. 

Now the M-matrix of the above design is given as 
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Obviously, this matrix satisfies the condition of efficiency balanced design i.e. MJ=J; where J 

is the ν×1 vector of ones. 

The efficiency factor is calculated using the formula 

                                  

i

irrJIM
*'*** /)1(  

                                         (2.15) 

On simplification we get 
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Equating (2.14) and (2.16), we get 

                                             20

3* 
                                                                  (2.17) 

Thus the design is Efficiency balanced. 

3 Optimality of the design 

Let θ1, θ2, θ3, …, θ(v-1) be non-zero eigenvalues of Cd matrix of design d. As we know that for 

variance balanced there will be only one non-zero eigenvalue with multiplicities (v–1) of Cd 

matrix of design d. That is, θ1 = θ2 = θ3 =..….= θ(v-1) = θ as C–matrix is positive semi-definite. 

Then, 

A-Optimality: A design is A-Optimal if 
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E-Optimality: A design is E-Optimal if 
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Since the constructed variance balanced is A-optimal, D-optimal as well as E-optimal, hence 

the design is a “universally optimal”. 
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Example 3.1 Consider a variance balanced and efficiency balanced design obtained in the 

example 2.1 with parameters v
*
 = 3, b

* 
= 23, r

* 
= 28, k

*
 = [2,…, 2; 3,...., 3; 4,.…, 4; 5,…., 5; 

6]. The trace of C-matrix is comes out to be 238/5 and non-zero eight value of C-matrix is 

5

119*   with multiplicity 2. 

I) Checking A- Optimality  

Here, the inequality  

)(

)13(1
213

1
*

di
i

Ctr






 
  

119

10

119

10
  

holds true, which is the required condition of a variance balanced to be A-optimal, with equal 

replication and unequal block sizes. Thus the variance-balanced and efficiency balanced 

design constructed here is A-optimal.  

II) Checking D-Optimality  

Here, the inequality  





























13

1

13

1
*

13

1
*

)13(
11

i i ii i 
  

22

119

5

119

5

















  

holds true, which is the required condition of a variance balanced to be D-optimal, with equal 

replication and unequal block sizes. Thus the variance-balanced and efficiency balanced 

design constructed here is D-optimal.  

III) Checking E-optimality 

Here, the inequality  

)13(

)(
)(Min *


 d

i
Ctr


5

119

5

119
  

holds true, which is the required condition of a variance balanced to be E-optimal, with equal 

replication and unequal block sizes. Thus the variance-balanced and efficiency balanced 

design constructed here is E-optimal.  

Since the constructed variance balanced is A-optimal, D-optimal as well as E-optimal, hence 

the design is a “universally optimal”. 

 



www.ijsrm.humanjournals.com 
 

Citation: Awad Rashmi et al. Ijsrm.Human, 2016; Vol. 5 (2): 32-48. 47 

CONCLUSION 

Since in many experimental situations, however, block designs with unequal block sizes 

and/or with unequal replications may be required. Here our main purpose is to study the 

universal optimality of block designs with unequal block sizes. In this research, we have 

significantly shown that the constructed variance-balanced and efficiency balanced designs 

are universally optimum. It is also expected that the results of our research in this area, 

appear to have the potential of being useful to the researchers engaged in this particular area 

of interest.  

Acknowledgment 

We are grateful to the editor and anonymous referees for their constructive comments and 

valuable suggestions which led to the improvement of this article. 

REFERENCES 

1. Addelman, S. (1962). Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics, 

4, 21-46. 

2. Agarwal, G. G. and Kumar, S. (1984). A note on construction of variance balanced designs associated with 

GD designs. Calcutta Statist. Assoc. Bull., 33, 187-190. 

3. Agarwal, G. G. and Kumar, S. (1985). A note on construction of variance balanced designs. J. Ind. Soc. 

Agric. Statist., 37, 181- 183. 

4. Agrawal, H. L. and Prasad, J. (1982). Some methods of construction of balanced incomplete block designs 

with nested rows and columns. Biometrika, 69, 481-483. 

5. Angelis, L.; Moyssiadis, C. and Kageyama, S. (1994). Constructions of Generalized Binary Proper 

Efficiency Balanced Block Designs with Two Different Replication Numbers. Sankhya, 56, 259-266. 

6. Billington, E. J. B. and Robinson, P.T. (1983). A List of Balanced Ternary Designs with R≤15 and Some 

Necessary Existence Conditions. Ars Combinatoria, 10, 235-258. 

7. Bose, R. C. and Nair, K. R. (1939). Partially balanced incomplete block design. Sankhya, 4, 337-372. 

8. Caliński, T. (1971).  On some desirable patterns in block designs. Biometrics, 27, 275-292. 

9. Caliński, T. (1977). On the notation of balance block designs. Recent Developments in Statistics, 

Amsterdam, North-Holland Publishing Company, 365-374.  

10. Ceranka, B. and Graczyk, M. (2009). Some notes about efficiency balanced block designs with repeated 

blocks. Metodološki Zvezki, 6(1), 69-76.  

11. Das, M. N. and Ghosh, D. K. (1985). Balancing incomplete block designs. Sankhya, B 47, 67-77. 

12. Dey, A. and Das, A.  (1989). On some E-optimal block designs. Metrika, 36, 269-278. 

13. Ghosh, D. K.; Divecha, J. & Kageyama, S. (1992). Equireplicate variance balanced designs from group 

divisible designs. J. Japan Statist. Soc., 21, 205-209. 

14. Ghosh, D. K.; Shah, A. and Kageyama, S. (1994). Construction of variance balanced designs and efficiency 

balanced block designs. Journal of Japan. Statist. Soc., 24, 201-208. 

15. Gupta, S. (1992). Efficiency balance through BIB and GD designs. The Indian Journal of Statistics, B, 

54(2), 220-226.  

16. Gupta, S. and Jones, B. (1983). Equireplicate balanced block designs with unequal block sizes, Biometrika, 

70, 433-440. 

17. Gupta, V. K. and Singh, R. (1989). On E-optimal block designs, Biomerrlka, 76, 184-l88. 

18. Gupta, V. K.; Das, A. and Dey, A. (1991). Universal optimality of block designs with unequal block sizes. 

Statistics & Probability Letters, 11, 177-180.  



www.ijsrm.humanjournals.com 
 

Citation: Awad Rashmi et al. Ijsrm.Human, 2016; Vol. 5 (2): 32-48. 48 

19. Hanani, H. (1975). Balanced Incomplete Block Designs and related designs. Discrete Math. 11, 255-269. 

20. Hedayat, A. and Federer, W. T. (1974). Pairwise and variance balanced incomplete block design. Ann. Inst. 

Stat. Math., 26 (1), 331-338. 

21. Jones, R. M. (1959). On a property of incomplete blocks. Journal of the Royal Statistical Society, Series B, 

21, 172-179.  

22. Kageyama, S. (1974). On Properties of Efficiency Balanced Designs. Communications in Statistics-Theory 

and Methods, 9, 597-616. 

23. Kageyama, S. (1976). Construction of balanced block designs. Util. Math., 9, 209-229. 

24. Kageyama, S. (1988). Existence of variance balanced binary designs with fewer experimental units. Statist. 

Probab. Lett. 7, 27-28. 

25. Khatri, C. G. (1982). A note on variance balanced designs. J. Statist. Plann. Inference, 8, 173-177. 

26. Kiefer, J. (1958). On the non-randomized optimality and randomized non-optimality of symmetrical 

designs. Ann. Math. Statist. 29, 675-699. 

27. Kiefer, J. (1975). Construction and optimality of generalized Youden designs, in: J. N. Srivastava, ed. A 

Survey of Statistical Designs and Linear Models (North-Holland, Amsterdam), 333-353. 

28. Lee, K.Y. and Jacroux, M. (1987a). Some sufficient conditions for the E- and MV-optimality of block 

designs having blocks of unequal sizes. Ann. Instir. Statist. Math., 39, 385-397. 

29. Lee, K.Y. and Jacroux, M. (1987b). On the construction of E- and MV-optimal group divisible designs 

with unequal blocks sizes. J. Statist. Plann. Inf., 16, 193-201. 

30. Lee, K.Y. and Jacroux, M. (1987c). On the E-optimality of block designs having unequal block sizes. 

Sankhya, B 49, 126-136. 

31. Mukerjee, R. and Kageyama, S. (1985). On resolvable and affine resolvable variance balanced designs. 

Biometrika, 72, 165-172. 

32. Mukerjee, R., and Saha, G. M. (1990). Some optimality results on efficiency balanced designs. The Indian 

Journal of Statistics, B, 52(3), 324-331.  

33. Pearce, S. C. (1964). Experimenting with Blocks of Normal Size. Biometrics, 20 (4), 899-706. 

34. Pearce, S. C. (1971). Precision in Block Experiments. Biometrics, 58, 161-167. 

35. Puri, P. D. and Nigam, A. K. (1975). A note on efficiency balanced designs. The Indian Journal of 

Statistics, B, 37(4), 457-460.  

36. Raghavarao, D. (1959). Some Optimum Weighing Designs. Annals of Mathematical Statistics, 30, 295-

303. 

37. Rajarathinam, A.; Radhika, A. and Ghosh, D. K. (2014). Variance balanced design and its optimality. Int. J. 

Agricult. Stat. Sci., 10 (1), 43-48. 

38. Rajarathinam, A.; Sivasubramanian, M. and Ghosh, D. K. (2016). Construction of efficiency balanced 

design using factorial design. Journal of Modern Applied Statistical Methods, 15 (1), 239-254. 

39. Rao, V. R. (1958). A note on balanced designs. Ann. Math. Statist. 29, 290-294. 

40. Shrikhande, S. S. and Raghavarao, D. (1963). A method of construction of incomplete block designs. 

Sankhya, A 25, 399-402. 

41. Sun, T. and Tang, Y. (2010). Optimal efficiency balanced designs and their constructions. Journal of 

Statistical Planning and Inference, 140, 2771-2777.  

42. Williams, E. R. (1975). Efficiency-balanced designs. Biometrika, 62, 686- 689. 

 

 


