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ABSTRACT  

In this paper, the exponential-logarithmic distribution (ELD) 

is considered. Classical and Bayesian analysis using Markov 

Chain Monte Carlo (MCMC) method are studied. It is 

assumed that the lifetimes of test units follow ELD. Based on 

type II doubly censoring, the maximum likelihood 

estimations (MLEs) are obtained for the distribution 

parameters. Also, asymptotic variance and covariance matrix 

of the estimators are investigated. An iterative procedure is 

used to obtain the estimators numerically using Mathematica 

9. In addition, confidence intervals of the estimators are 

presented. Different loss functions are used to discuss 

Bayesian estimation. A real data set is analyzed to illustrate 

the proposed methods and compare the performance of the 

estimates. 
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INTRODUCTION 

The exponential-logarithmic distribution (ELD) was introduced by Tahmasbi and Rezaei 

(2008). They constructed this model as a log-series mixture of exponential random variables. 

ELD has decreasing failure rate thus making it a suitable model for studying lengths of 

organisms, devices, and materials in biological and engineering fields. Moala and Garcia 

(2013) pointed that ELD could be a good alternative to analyze lifetime data because the 

survival and hazard functions presented a closed analytical form. This would imply analytical 

flexibility and computational advantages for inference analysis. Moala and Garcia (2013) 

considered the estimation of ELD using maximum likelihood (ML) and Bayesian methods. 

They studied uniform, beta and Jeffreys priors for Bayesian analysis using Markov Chain 

Monte Carlo (MCMC) method based on complete samples. They found that there is no 

difference between the priors when the sample size is moderately large. Although, in small 

dataset, the uniform prior is more suitable for the estimation of parameter p. Pappas et al. 

(2015) presented a generalization of ELD, which has increasing, decreasing and unimodal 

failure rates. They estimated the parameters using maximum likelihood estimation based on a 

complete method and when some observations are randomly right-censored. Also, Pijyan 

(2015) used pseudo maximum likelihood method to estimate the parameters' distribution 

based on censored data.  

The probability density function (PDF) and the cumulative distribution function (CDF) are 

given, respectively, as: 
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Where, 0 1p   and 0   are the parameters. It is worth noting that when 1,p   the ELD 

reduces to the exponential distribution with parameter .  Tahmasbi and Rezaei (2008) 

studied several statistical properties of ELD. 

In this study, we considered the type II doubly censored samples denoted by: 

1 1... , 1 .r r s sx x x x r s n         
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The samples are obtained when some observations are initially censored and where the life 

test is terminated before all items on test failed. Type II doubly censored samples have been 

investigated by several authors among them; Fernández (2000 a, b), Raqab and Madi (2002), 

Kim and Song (2010), Khan (2014) and Shen et al. (2016). 

The main objective of this paper was to estimate the distributions' parameters using 

maximum likelihood and Bayesian methods. In Section 2, MLEs are derived. For Bayesian 

inference discussed in Section 3, MCMC are used for computing Bayesian estimates. Three 

different kinds of loss functions are investigated. In Section 4, an application on the real 

dataset carried for comparisons between estimators are discussed. Finally, in Section 5, we 

made some conclusions. 

2.  Maximum Likelihood Estimation 

Consider a random sample of size n from ELD and let ...r sx x  be the ordered 

observations remaining when the 1( 1)r nq  smallest observations and 2( )n s nq   largest 

observations have been censored; where, 1,r s q  and 2q are fixed, and 1 20 1.q q    The 

likelihood function, given the type II doubly censored sample ( ,..., ),r sx x x  can be written 

as: 
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Putting Equations (1) and (2) in (3), we get the likelihood function of ELD as follows: 
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Accordingly, the log-likelihood of Equation (4) is given by: 
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Where, ( , ) 1 (1 ) .ix
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Thus, the maximum likelihood estimators (MLEs) of the parameters p and   could be found 

by solving the two non-linear equations simultaneously. 
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The solution of Equations (5) and (6) can be found using Newton-Raphson method. 

The asymptotic variance-covariance of the MLE for the parameters p and   are given by the 

elements of the inverse of the Fisher information matrix 

                                     (7) 

Although it is difficult to get the exact expectation of the above expression, we will take the 

approximate asymptotic variance-covariance matrix; the observed variance-covariance, for 

MLE by dropping the expectation from Equation (7). Thus, the observed variance-covariance 

matrix is obtained by inverting observed information matrix as follows: 
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The asymptotic normality of the MLE can be used to compute the approximate confidence 

intervals for the parameters p and , which become: 

               (9) 

Where, /2z  is the upper ( / 2)100pth  percentile of the standard normal variate. 

3.  Bayesian Estimation 

In this section, we present the different kinds of loss functions (see also: Soliman et al. 

(2012), Feroze and Aslam (2012), Feroze et al. (2014) and Bakoban and AbuBaker (2015) 

and Feroze (2016)) to estimate the parameters.  

Under the assumption that both of the parameters p and   are unknown, it is assumed that 

the parameter   has a gamma prior and p has a uniform prior U(0,1). Thus, the joint prior 

density of the parameters p and   can be written as: 
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Where, a  and b are the hyperparameters of gamma prior. 

Using Bayesian theorem, by multiplying Equations (4) and (10), the joint posterior density 

function of p and   given the data could be written as: 
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Therefore, the Bayes estimate of any function of p and   say ( , ),p   under squared 

error (SE) loss function is: 
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Another kind of loss functions is a LINEX (linear-exponential) loss function. The LINEX 

loss function gives more weight to overestimation or underestimation. The Bayes estimate of 

any function of p and   say ( , ),p   under LINEX loss function is: 
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A more general loss function is the general entropy loss function (GE). The Bayes estimate of 

any function of p  and   say ( , ),p   under GE loss function is: 
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Generally, the ratio of two integrals given by Equations (12-14) cannot be obtained in a 

closed form. Therefore, we use the MCMC method to generate samples from the posterior 

distributions and then compute the Bayes estimators of ( , )p   under the different kinds 

of loss functions. The MCMC approach is described as follows: 

3.1 MCMC techniques 

Monte Carlo integration is the main problem applied to obtain samples from very complex 

probability distribution. Markov Chain is a stochastic process in which future states are 

independent of past states given the present state. Markov chain Monte Carlo (MCMC) 

method use computer simulation of Markov chains in the parameter space (Gilks et al. (1996) 

and Gamerman (1997)). Therefore, MCMC is a class of methods for simulating draws that 

are slightly dependent and approximate from a (posterior) distribution. We then record those 

draws and calculate the quantities of interest for the (posterior) distribution. In Bayesian 

statistics, there are two MCMC algorithms commonly used namely, the Gibbs Sampler and 

the Metropolis-Hastings algorithm. 
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1. Gibbs Sampling 

The Gibbs sampler can be used to sample from the joint distribution if the full conditional 

distributions for each parameter is known. For each parameter, the full conditional 

distribution is the distribution of the parameters on the known information and all other 

parameters. Suppose we have a posterior to sample from and the full conditional distributions 

remain unknown then there will be no Gibbs sampling. If this sampling method fails, then we 

can resort to the Metropolis-Hastings algorithm, which will always work. 

2. Metropolis-Hastings Algorithm 

The Metropolis-Hastings (MH) algorithm follows the following steps: 

1. Choose a starting value (0) ,  such that the probability (0)( ) 0.p y   

2. At iteration t, draw a candidate *  from a jumping distribution * ( 1)( ).t

tJ     

3. Compute an acceptance ratio (probability): 

* * ( 1)

( 1) ( 1) *

( ) / ( )

( ) / ( )

t

t

t t

t

p y J
r

p y J

  

  



 
                                              (15) 

4. Accept *  as ( )t  with probability min(r, 1). If *  is not accepted, then ( ) ( 1).t t    

5. Repeat steps 2-4 N times to get N draws from ( ),p y  with optional burn-in. 

The original Metropolis algorithm required that * ( 1)( )t

tJ     be a symmetric distribution 

(such as the normal distribution), that is * ( 1) ( 1) *( ) ( )t t

t tJ J     using the Metropolis-

Hastings algorithm, it is evident that symmetry is unnecessary. 

If we have a symmetric jumping distribution that is dependent on 
( 1) ,t 

 then we have what is 

known as random walk Metropolis sampling. 

In the case where our jumping distribution is symmetric, 

*

( 1)

( )

( )t

p y
r

p y



 
  

If our candidate draw has higher probability than our current draw, then our candidate is 

better hence, we definitely accept. 
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In the case where our jumping distribution is not symmetric, we use Equation (15). 

In the case of independent Metropolis-Hastings sampling,  

* *

( 1) ( 1)

( ) / ( )
,

( ) / ( )

t

t t

t

p y J
r

p y J

 
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   where * ( 1) *( ) ( ).t

t tJ J     

Accept *  as ( )t  with probability min(r, 1). If *  is not accepted, then ( ) ( 1).t t    

1. For each *,  draw a value u from the Uniform (0,1) distribution. 

2. If ,u r , accept *  as ( ).t  Otherwise, use ( 1)t  as ( )t  

Candidate draws with higher density than the current draw is always accepted. 

Unlike in rejection sampling, each iteration always produces a draw, either *  or ( 1).t   

3.2 Bayesian estimation using MCMC techniques 

In this subsection, Bayes estimators are derived using MCMC. Moala and Garcia (2013) 

concluded that the uniform distribution is a suitable prior for the parameter p in the case of 

small samples. It is better for estimating the parameters than beta and Jefferys priors. In 

conclusion, a Uniform prior U(0, 1) for the parameter p is used in this sub-section.  

The joint posterior density function of p and   presented, in Equation (11), could be written 

as follows: 
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The conditional pdfs of p and   are given by 

              (17) 
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                 and
*

2 ( , ) .

s

i

i r

v x

p x e


  

 
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In this representation, the full conditional form presented in Equation (17) is the gamma 

density with shape parameter ( 1a s r   ) and scale parameter (
s

i

i r

b x


 ). Thus, the 

samples of   can be easily generated using any gamma generating routine. Also, since the 

conditional posterior of p  in Equation (18) do not present standard forms, and therefore 

Gibbs sampling is not a straightforward option; the use of the Metropolis–Hasting sampler is 

required for the implementations of MCMC methodology. Given these conditional 

distributions in Equations (17) and (18), Metropolis-within-Gibbs samplers are used. 

The following algorithm is a hybrid algorithm with Gibbs sampling steps for drawing the 

parameter   and with MH steps for drawing :p  

1. Start with initial value, say, MLE (
(0) (0),MLE MLEp  ). 

2. Set j = 1. 

3. Generate ( )j  from Gamma ( 1a s r   ,
s

i

i r

b x


  ‏ .(

4. Using the following Metropolis–Hastings, generate ( )jp from the proposal distribution.  

i) Generate a proposal 
*p  from the proposal distribution (the Normal distribution 

( 1) ˆ( , ( ))jN p var p
 is used). 

ii) Evaluate the acceptance probability 
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iii) Generate u  from a Uniform (0, 1) distribution. 

iv) If ,u   accept the proposal and set 
( ) * ,jp p else set 

( ) ( 1).j jp p   

5. Set j = j 1+‏. 



www.ijsrm.humanjournals.com 

 

Citation: R. A. Bakoban et al. Ijsrm.Human, 2016; Vol. 4 (4): 47-63. 56 

6. Repeat steps 3–5, N times and obtain ( ) ( )and ,j jp  1,..., .i N  

7. To compute the credible intervals of ,and p  order ( ) ( )and ,j jp  1,..., ,i N  as  

(1) ( ) (1) ( )... and ... .N Np p      

Then, the 100(1 )%  credible intervals of  

In order to guarantee the convergence and remove the affection of the selection of initial 

values, the first M simulated varieties are discarded. Then the selected samples are 

( ) ( )and ,j jp  1,..., ,i M N   for sufficiently large N, forms approximate the posterior 

samples used to develop the Bayesian inferences. 

Based on SE, presented in Equation (12), the approximate Bayesian estimates of  

is given as: 

 

Also, the approximate Bayesian estimates for ,  under LINEX loss function, from Equation 

(13) is given as: 
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And the approximate Bayes estimates for ,  based on the GE, from Equation (14) is given 

as: 
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4.  Real Data Application 

In this section, a real data set is analyzed to illustrate the methods of estimations discussed in 

the previous sections. Lawless (1982) considered dataset related to the lifetime of a type of 

electrical insulator subject to a constant voltage stress. The dataset (lifetimes in minutes to 

fail) is as follows: 
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0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 

12.06, 36.71, 72.89. 

Moala and Garcia (2013) proved that ELD is appropriate for the data and gives better fit than 

Weibull distribution proposed by Lawless (1982) to fit the data. Therefore, Lawless dataset is 

used to study the performance of the non-Bayesian and Bayesian estimators which were 

derived in Sections 3 and 4. Complete and doubly censored samples with 

( , ) (1,19) and (5,15)r s   were used. Based on doubly censored samples, the MLE and 95% C.I. 

of the parameters   and p  are presented in Tables 1, 2 and 3. For Bayesian estimators, 

MCMC method is conducted using the algorithms in Sub-Section 3.2. Based on doubly 

censored samples of the Bayesian estimate under SE, LINEX and GE loss functions of the 

parameters   and p  are presented in Tables 1, 2 and 3. For the LINEX and GE loss 

functions, 3, 3c    and 3, 3q    are used, respectively.  

MH subclass of MCMC was carried with N=11000 and M=1000. The hyperparameters of 

gamma prior 10 and 500a b   were used to generate the values of .  

Table 1. MLE and Bayes MCMC estimates under SE, LINEX and GE of   for Lawless 

data. 

r  s  MLE SE 
LINEX GE 

3c    3c   3q    3q   

1 19  4    8 

5 15       

Table 2. MLE and Bayes MCMC estimates under SE, LINEX and GE of p  for Lawless 

data. 

r  s  MLE SE 
LINEX GE 

3c    3c   3q    3q   

1 19   8    

5 15       

 

Tables 1 and 2 show that means for estimators of   and p  based on censored samples were 

less than the others based on complete sample. Also, the Bayes estimate under GE (with q 

=3) was the best for complete sample whereas; the MLEs seem to be the best for censored 
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sample. Moreover, according to the 95% CIs, Table 3 shows that the length of intervals for 

the estimate of   based on MCMC method are less than the others based on ML method in 

the both cases (complete and censored samples). It is also the same for the estimate of p in 

the case of complete sample. Further, Intervals based on MLEs in the case of doubly 

censored sample was shorter than the other of complete sample. 

Table 3. 95% CIs MLE and Bayes MCMC estimates under SE of   and p  for Lawless data.  

r  s  Method 
  p  

C.I. Length C.I. Length 

1 19 
MLE (0.00271, 0.07596)  (-0.14277, 0.33911)  

MCMC (0.0268, 0.0494)  (0.0445, 0.5238)  

5 15 
MLE (-0.01147, 0.05955)  (-0.09697, 0.18985)  

MCMC (0.0236, 0.0489)  (0.048, 0.6367)  

 

Figures 1, 2, 5 and 6 show the values of the parameter   and p  obtained from MCMC for 

complete sample and doubly censored samples. Figures 3, 4, 7 and 8, also show the 

histograms of the parameter   and p  obtained from MCMC for complete sample and 

doubly censored samples. It is noted that the histograms of the parameter   are 

approximately, normally distributed, while the histograms of the parameter p are right 

skewed. Table 4 shows some statistical measures, mean, median, standard deviation (S.D.) 

and skewness (S.K.), after bun in; for N-M, for posterior distributions of   and p  based on 

MCMC. 
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Figure 1. Values of the parameter   obtained from MCMC for complete sample. 
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Figure 2. Values of the parameter p  obtained from MCMC for complete sample. 

 

Figure 3. Histogram of the parameter   obtained from MCMC for complete sample. 

 

Figure 4. Histogram of the parameter p  obtained from MCMC for complete sample. 
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Figure 5. Values of the parameter   obtained from MCMC for doubly censored sample. 
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Figure 6. Values of the parameter p  obtained from MCMC for doubly censored sample. 

 

Figure 7. Histogram of the parameter   obtained from MCMC for doubly censored sample. 

 

Figure 8. Histogram of the parameter p  obtained from MCMC for doubly censored sample. 

Table 4. MCMC results for some posterior statistical measures for Lawless data. 

Parameter mean median S.D. S.K. 

Complete sample r =1, s =19 

      

p  
    

Doubly censored sample r =5, s =15 

      

p  
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Finally, some of the computing criteria (Linhart and Zucchini, 1986) are presented in Table 5. 

AIC (Akaike information criterion), BIC (Bayesian information criterion), CAIC (Consistent 

Akaike information criterion), HQIC (Hannan- Quinn information criterion), K-S 

(Kolmogorov- Smirnov) and the value -2 l, logl L are computed for all estimators 

presented in Tables 1 and 2. In Table 5, in the case of complete sample, the estimated ELD 

provide excellent good fit to the given data and the MLEs estimates fits the data better than 

Bayes based on all computing criteria except for K-S, where the Bayes estimate under 

general entropy with q =3 was fitting better. On the other hand, in the case of doubly 

censored sample, MLEs and the Bayes estimate under general entropy with q =3 were fitting 

better and close to each other than the overall estimates. Furthermore, all computing criteria 

for doubly censored sample were less than the corresponding complete sample. This implies 

that the censored sample is more useful especially in real-life applications. 

Table 5. Computing criteria for ML and Bayes estimates. 

Type 

of 

sample 

Methods of estimation AIC BIC CAIC HQIC K-S -2 l 

C
o
m

p
le

te
 s

am
p
le

 

MLE       

SE       

LINEX ( 3c   )       

GE ( 3q   )       

LINEX ( 3c  )       

GE ( 3q  )       

D
o
u
b
ly

 c
en

so
re

d
 s

am
p
le

 MLE       

SE       

LINEX ( 3c   )       

GE ( 3q   )       

LINEX ( 3c  )       

GE ( 3q  )       
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5.  CONCLUSION 

We considered using the ELD for the purpose of this study. Point and interval estimation 

were derived. ML and Bayesian estimations were used. MCMC technique was conducted for 

Bayesian estimates under SE, LINEX and GE loss functions. The study proposed the use of 

gamma and Uniform (0, 1) priors for Bayes estimation. The method applied was discussed by 

Lawless (1982) and Moala and Garcia (2013). Based on complete and doubly censored 

samples, we found that most Bayes estimators behave better than others, especially under GE 

loss function. This point agrees with the conclusion of Moala and Garcia (2013) on complete 

sample. Finally, the doubly censored sample was fitting better based on the computing 

criteria. 
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