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ABSTRACT

Many antibiotics have been used quite for a period of time
and for so long that some bacteria have been known to be
resistant. Lantibiotics are ribosomally synthesized post-
transitionally from Microbispora corallina by a modification
process of hydroxylation of proline and chlorination of
tryptophan amino acid sequence in a coordinated fashion of
gene regulation. Lantibiotics are becoming more popular as
an antibiotic against Gram-positive and Gram-negative
bacteria. Most especially its ability to combat methicillin-
resistant Staphylococcus aureus (MRSA) infection which has
been known to be a nosocomial infection causing
microorganism. This review summarizes the potential
opportunity in the comprehension of the gene regulation in
Microbispora corallina for increased production of
microbisporin lantibiotics. By considering the mechanistic
procedure involved in gene regulation forMicrobispora
corallina at the level of DNA replication, transcription, post-
transcription, translation, post-translation will foster increased
production of microbisporin antibiotics to fight resistant
microbial infection in the future. Exploring the working
mechanism of association of cluster of genes such as
MibW/MibX/MibR will provide a fertile ground for copious
production of microbisporin in Microbispora corallina.
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INTRODUCTION

Microbispora corallina is Gram-positive bacteria which belong to the family of
Actinomycetes whose peptide synthesized products has been known in the treatment of many
resistant infections, including methicillin-resistant Staphylococcus aureus (MRSA) Gram-
positive bacteria. The main aim of this review research study is to understand the nature of
gene regulation control in Microbispora corallina and its role in the biosynthesis of
microbisporicin and some other polypeptides at the various level of gene regulation [1]. The
synthesis of enzymes in bacteria follows a double genetic control (Jacob and Monod 1961).
Only a few lantibiotics biosynthetic gene clusters derived from actinobacteria have been
characterized thus far all of them are chromosomally located (Li and O' Sullivan, 2012).
These clusters typically contain genes encoding the precursor peptide, enzymes responsible
for a variety of post-translational modification proteins involved in export and immunity with
frequent pathway-specific regulatory proteins (Chatterjee et al., 2005; Amison et al;2013).
Most substrates formed and their derivatives play a very critical role in the gene regulation of
Actinobacteria microorganism. Different levels of gene regulation occur in bacteria. These
established levels of gene regulation in prokaryotes occur at the DNA, transcriptional,
translational, posttranscriptional, posttranslational levels. The DNA rearrangement has been
identified with gene regulation at the DNA level. In-Depth knowledge of this network of
gene clusters enables more modification and manipulation for lantibiotic synthesis in
Microbispora corallina actinobacteria. The purpose of this study is twofold. First, to
understand the various gene clusters connection of promoter, regulator, and oppressor that
takes part in the control of biosynthesis of lantibiotics in Microbispora corallina. Second, to
apply this knowledge to enhance the synthesis of microbisporicin antibiotics in Microbispora
corallina. The topic chosen is gene regulation in actinomycete-this is an area of the field in
which earlier researchers have identified MibX and MibW as the sigma/anti-sigma factor
complex for regulation of biosynthesis of microbisporicin antibiotics in Microbispora
corallina (Lorena T. Fernandez-Martinez et al., 2015). Performing genetic manipulations
with bld genes in Streptomyces coelicolor, it possible to achieve an increased level of
antibiotics production in actinomycetes (Ostash, B.O. et al.,, 2011). With genetic
manipulations of MibX/MibW/MibR genes, it is possible to achieve a significant increase in

the level of microbisporicin lantibiotics production by Microsbispora corallina.
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MATERIAL AND METHODS:

A computer-aided search of PubMed and Google scholar was done using a different
combination of the keywords.”Microbispora corallina biosynthesis”“gene regulation in
Microbispora corallina,” “Microbispora and antibiotics”, “Microbispora corallina and
inorganic phosphates”. An initial search was done using gene regulation which showed 112
articles. The articles were analyzed and 86 relevant articles were included in the review. All
the studies about the gene regulation in M. corallina were analyzed. The aim was to
determine various gene regulations in Microbispora corallina at the DNA level, transcription
level, posttranslational level, translational level and posttranslational level for knowledge
manipulation that will enhance more lantibiotic biosynthesis in Microbispora corallina.

Principles
Transcriptional level regulation

The regulation at the level of the transcription plays an important role in the biosynthesis of
peptide products in Microbispora corallina in further maturation of produced peptide
products before post-translation modification. The biosynthesis of various and different
metabolites are regulated by phosphate in association with catabolite activator protein.
Production of these valuable compounds occurs only under phosphate-limiting nutritional
conditions. In some few cases as well, evidence has shown that the negative phosphate
control is made happen precisely at the transcription level. It has been proposed that
phosphate control is used as a mechanism that triggers secondary metabolite biosynthesis

when phosphate in the environment is depleted.
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Fig. 1: The microbisporicin biosynthetic gene cluster (Foulstin and Bibb 2010).

Printed with permission from Molecular Microbiology: Published by John Wiley and Sons
Ltd.

The microorganism cannot proceed at a normal rate (Martin and Demain, 2004). The ability
to control and regulate phosphate in the synthesis of secondary metabolites is made to happen

at the transcriptional and posttranslational level by antibiotic synthases activity.
Posttranslational level regulation

Microbisprocin lantibiotics, being a peptide containing 19-38 amino acid residues that are
synthesized in the ribosome of Microbispora corallina with subsequent posttranslational
modification confers stability of the residues. The network of cluster genes controls the
biosynthesis of microbisporicin by posttranslational modification by chlorination of
tryptophan and hydroxylation of proline residues. Different studies have pointed the
involvement of tryptophan halogenases in the modification of peptide synthesized in the
ribosomal organelle of Microbispora corallina and the regulation of specific pathway of gene

cluster by an extracytoplasmic function of & factor-o factor complex.
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Fig. 2: The posttranslational modification of peptide synthesized by Chlorination and
hydroxylation of Tryptophan and Proline respectively.

DISCUSSION:

It has been discovered by researchers that Microbispora corallina produced lantibiotics
antibiotics which is active against microorganisms such as methicillin-resistant
Staphylococcus aureus (MRSA). This has been made possible due to autoinduction of
regulatory gene MibX, MibW and transcriptor MibR (Fernandez-Martinez L. T. et al., 2015).
Understanding of the molecular mechanism of this gene and its manipulative express is an
insight into the proliferation of Microsbispora corallina for antibiotic production (Rabyk
M.V. et al., 2012). The enzymes synthesis in bacteria follows a dual genetic control.

However, the structural genes determine the molecular organization of the proteins.
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Furthermore, the functionally specialized, genetic determinants, called regulator and operator
genes, usually control the rate of protein synthesis through intermediacy cytoplasmic
components known as the repressors. The repressors can be inactivated (induction) or
activated (repression) by certain metabolites. The complex system of regulation appears to
operate directly at the level of the biosynthesis by the gene of a short-lived intermediate or
biological messenger which becomes associated with the ribosomes where protein
biosynthesis takes place usually. Guanosine tetraphosphate (ppGpp) inhibit stable RNA and
causes the synthesis of mMRNA (Bremer H. and Ehrenberg M. 1995) [1, 2]. This action is an
expression of the relA gene and absence of the relA gene in Microbispora corallina. This
strongly indicates that guanosine tetraphosphate plays an important role and function in the
regulation of the gene of Microbispora corallina, (Fernandez-Martinez et al., 2015). The
Alpha/Beta family, (also known as AB-superfamily) transport proteins involved in lantibiotic
translocation, regulatory proteins controlling lantibiotic biosynthesis and proteins that protect
the producing strain from the action of its own lantibiotic. By analysis of their genes and their
products, this is giving a greater understanding of the complex mechanisms of the
biosynthesis of these unique peptides for a fight against microbial organisms [3, 44].
Importantly, phosphate is regulating the synthesis of different antibiotics and other secondary
metabolites that are being produced. Biosynthesis of these valuable compounds occurs only
under the limited supply of phosphate. In some cases, there is evidence that is showing a
negative phosphate controls is occurring at the transcriptional level. Negatively, the effect
exerted by inorganic phosphate on the biosynthesis of secondary metabolites is observed in a
wide range of microorganisms, including actinomycetes and probably has a wide significant
ecological role. It has been proposed that phosphate control is used as the mechanism to
trigger secondary metabolite biosynthesis when phosphate in the environment is depleted and
therefore growth of the microorganism cannot proceed at the normal rate (Martin et al). In
conditions, when the concentration of phosphate in the culture medium decreases drastically
below a threshold level, bacteria, therefore, increase their production of a variety of
metabolites that which serve as direct antagonists to another microorganism. Phosphate
regulation that occurs in the biosynthesis of secondary metabolites is exerted mostly at the
transcriptional and posttranscriptional (antibiotic synthases activity) levels [4, 28].
Microbisporicin is active against Gram-positive bacteria, including vancomycin-resistant
enterococci (VRE). It has shown superior efficacy in animal models of multidrug-resistant
infections compared with drugs of last resort, linezolid, and vancomycin. In M. corallina, it

was proposed that unknown signal, possibly nutrient limitation, activates the positive-
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regulator MIibR in a growth rate-dependent manner. MibR triggers the expression of the
MibABCD-TUV operon, leading to the precursor peptide biosynthesis (mibA), the core
peptide proteolysis and export (mibTU). The precursor peptide export would cause the

release of o-MibX through inactivation of the anti-a factor MibW. Sigma MibX controls, in

addition, mibR, genes to confer immunity to microbisporicin (mibFF and mibQ) and genes
required for tryptophan chlorination (mibHS) and proline hydroxylatrion (mibo) resulting in
the formation and fully processed and active microbisporicin [5]. These gene clusters
comprise, besides structural genes, genes encoding modification enzymes and transporters,
which have to be tightly regulated to guarantee a fully modified active peptide. The number
of regulations involved in the biosynthesis of antimicrobial peptides can vary from one to
several regulators at the same time (Onaka et al., 2005). Moreover, the external factors such
as nitrogen and carbon sources and temperature, pH, the presence of metal ions, oxygen play
a significant role in the production of several known ribosomally post-translationally
modified peptides [6]. The gene cluster consist of structural gene lanA that encodes pre
peptide, modification gene lanB, C, M, L, labKC encoding enzymes that introduce thioether
rings, transporter (lanT) gene that exports modified peptide as well cleaves leader peptide for
and extracellular protease (lanP) that removes the leader and immunity gene (lan I (H) and
lan FEG that protect the producing bacteria from being harm by its own synthesized product.
The regulation of lantibiotics biosynthesis is done either by quorum-sensing or by growth
phase-dependent mechanism’s (Charterjee et al., 2005). Quorun sensing system consists of a
receptor histidine kinase (lanK) and its cognate transcriptional response regulator (lanR)
(McAulifee et al. 2001; Bierbaum & Sahl 2009) [7, 8, 9]. There is a growing number being
identified from Actinobacteria phylum and some of these exhibit novel modifications leading
to increased functional diversity among lantibiotics[11]. To identify secondary metabolite
genes clusters, the analysis pipeline antiSMASH was run on the genome, giving an overview
of the secondary metabolite potential of this strain. A total of 20 potential clusters genes for
secondary metabolites were identified in the Microbispora corallina genome, in addition to
the mib cluster gene [12, 13].

CONCLUSION

Majority of the recent analysis of genome and sequencing and experimental research
vehemently indicate that a more complex gene regulation network is yet to be explored and

discovered. Understanding of these intricate the network in the coordinated gene regulation
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will increase the biosynthesis of microbisporicin lantibiotics in Microbispora corallina. By
giving recognition to the fact that gene regulation for biosynthesis could be explored and be
manipulated at the level of DNA, transcriptional, posttranscriptional, translational and
posttranslational stage of biosynthesis will foster abundant biosynthesis for microbisporicin
lantibiotics production to fight against a fast-growing drug-resistant microorganism. The
autogenous regulation of protein and RNA of its own product by a repressor protein that are a
target for mRNAs as the initiation codon (AUG) and the single-stranded 5 leader site of
action respectively are complex regulatory mechanisms that must be explored adequately in
the future research studies for the auto-induction biosynthetic process of microbisporicin
lantibiotics.
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