

Human Journals **Research Article** December 2016 Vol.:5, Issue:2 © All rights are reserved by Ojo, Taiwo J et al.

Risk Assessment of Sediment of Aforemu River, Oye Ekiti, Nigeria

www.ijsrm.humanjournals.com

Keywords: Heavy metals, geoaccumulation index, potential, ecological, index

ABSTRACT

In this paper, the pollution properties of Pb, Cr, Cu, Zn, Cd, and Ni in river sediments were studied. The results indicate varying degree of contamination with respect to their location in this order of 5>4>1>2>3. The concentrations of Pb, Cr, Cu, Zn, and Ni in the soil were low, so their potential ecological risks were far lower than other heavy metals and exerted no potential harm to environment except Cd which is of great concern.

1.0 INTRODUCTION

Heavy metals are regarded as serious pollutants of sediment because of their toxicity and environmental persistence¹. They can be migrated from the soil to other ecosystem components, such as groundwater, sediment and plants, thus affecting human health through drinking water and food chain. Health problems can be developed as a result of excessive dietary accumulation of heavy metals in human body².

There are various sources of heavy metals; some originates from anthropogenic activities like draining of sewerage, dumping of hospital wastes and recreational activities. Conversely, metals also occur in small amounts in nature and may enter into aquatic system through leaching of rocks, airborne dust, forest fires and vegetation³.

Elements like Pb, Cd, Cr and Ni, are said to be non-biodegradable thus, persist everywhere in the environment and have the ability to be deposited in various body organs which poses a great threat to the human health⁴. Several researches⁵ have shown that food plants, growing in heavy metal contaminated soils have higher concentrations of heavy metals than those grown in uncontaminated soil⁵. It has been reported that serious health problems have developed as a result of high accumulation of heavy metals such as Cd, and Pb in the human body⁶. Despite Zn and Cu being essential elements in the diet, high concentration in food plants is of great concern because they are toxic to humans and animals⁷. Therefore, this study focuses on level and risk of the heavy metals in the sediment of Aforemu River, oye Ekiti, Nigeria.

2.0 MATERIALS AND METHODS

2.1 Sample collection and preparation

Oye Ekiti is a town and headquarters of Oye Local government area in Ekiti state, western Nigeria. It has geographical coordinates of 7°8′00″N and 5°33′00″E. The major occupation of the inhabitant is farming.

A total of 25 sediment samples were collected from a depth of approximately 12cm at 5 different locations along Aforemu River stored in previously acid washed clean polyethylene container, which was thoroughly mixed. The samples were oven dried at 50° C until a constant weight is achieved. Then, these samples were pulverized and sieved through 0.8mm mesh and stored in polyethylene bag for further analysis.

2.2 Determination of total heavy metal in soil

Dried and powdered samples of 1.2 g were digested with mixture of HCl-HNO₃-HF-HClO₄. Pb, Cr, Cu, Zn, Cd, and Ni in the digest were determined using 210 VGP (Buck Scientific) atomic absorption spectrophotometer. The detection limit of the atomic absorption spectrophotometer used is 0.01.

2.3 Assessment method

(1) Geo-accumulation index (I_{geo})

The contamination levels of heavy metals in soils were assessed by geo-accumulation index (Igeo).

$$I_{geo} = \log_2 [Cn^{/(1.5B}n^{)}]$$

Where C_n is the measured concentration of heavy metal n in the soils, B_n the geochemical background concentration of metal n, and 1.5 is the background matrix correction factor due to lithogenic effects [muller].

Table1: Geo-accumulation index classes⁸

Classes	Ranges	Indications
0	Igeo<0	Practically uncontaminated
1	0 <igeo<1< td=""><td>Uncontaminated- moderate</td></igeo<1<>	Uncontaminated- moderate
2	1 <igeo<2< td=""><td>Moderately uncontaminated</td></igeo<2<>	Moderately uncontaminated
3	2 <igeo<3< td=""><td>Moderately-heavily contaminated</td></igeo<3<>	Moderately-heavily contaminated
4	3 <igeo<4< td=""><td>Heavily contaminated</td></igeo<4<>	Heavily contaminated
5	4 <igeo<5< td=""><td>Heavily- extremely contaminated</td></igeo<5<>	Heavily- extremely contaminated

(2) Contaminant factor and Degree of Contamination

Assessment of soil contamination is performed by the contamination factor

 (C_{f}^{i}) and degree of contamination $(C_{d})^{8}$.

$$C_f^i = C_s^i / C_n^i, \quad C_d = \sum_i^m C_f^i$$

Citation: Ojo, Taiwo J et al. Ijsrm.Human, 2016; Vol. 5 (2): 58-64.

Where C_s^{i} is the content of metal I, and C_n^{i} is the reference value, baseline level, or national criteria of metal i.

Classes	Indications
C _f <1	Low contamination
$1 < c_f < 3$	Moderate contamination
$3 < c_f < 6$	Considerably contaminated
$6 < c_{\rm f}$	Very high contaminated

Table 2: Descriptive classes of contamination factor⁹

Table 3: Degree of contamination⁹

Classes	Indications
C _d <8	Low degree of contamination
$8 \leq c_d < 16$	Moderate degree of contamination
$16 \le c_d < 32$	Considerable degree of contamination
$32 \leq c_d$	Very high degree of contaminated

(3) Ecological risk factor

An ecological risk factor (E_r^{i}) to quantitatively express the potential ecological risk of a given contaminant also suggested by HAKANSON is

 $E_r^i = T_r^i C_f^i$

The toxic response factor T_r^i of heavy metals i are:

$$T_r^{Zn}=1; T_r^{Pb}=5; T_r^{Cd}=30; T_r^{Cu}=5; T_r^{Ni}=5; T_r^{Cr}=2.$$

Table 4: Descriptive table for Ecological Risk factor $(E_r)^9$

Classes	Indications
$E_r^i \leq 40$	low potential ecological risk
$40 \le E_r^i < 80$	moderate potential ecological risk
$80 \le E_r^i < 160$	considerable potential ecological risk
$160 \le E_r^i < 320$	high potential ecological risk
$E_r^i \ge 320$	very high ecological risk

Citation: Ojo, Taiwo J et al. Ijsrm.Human, 2016; Vol. 5 (2): 58-64.

(4) Ecological risk index (I_r)

$$l_r = \sum_i^n E_r^i = \sum_i^n T_r^i C_f^i = \sum_i^n T_r^i C_s^i / C_n^i$$

Table 5: Descriptive table for Ecological Risk index $(I_r)^9$

Classes	Indications
Ir<150, low ecological risk	low ecological risk
$150 \le I_r < 300$	moderate ecological risk
$300 \le I_r < 600$	considerable ecological risk
I _r >600	very high ecological risk

3.0 RESULTS

Muller Descriptive Tables 1 is used to categorize the average values of *I*geo for each metal and their pollution levels. To further determine the environmental pollution and the ecological damage of heavy metals in the soil, potential ecological risk index method proposed by HAKANSON⁹ was employed and the descriptive Table 2-5 was used to categorize them.

Geo-accumulation Index (Igeo)

The Igeo values were calculated by the heavy metals (Cu, Ni, Zn, Cr, Cd, Pb) average concentrations in soil samples. The average values of Igeo for each metal and their pollution levels are shows that they are uncontaminated-moderate. The assessment results were in the following trend: Cd>Cr>Cu>Pb.>Zn>Ni

HUMAN

Table 6: Result for	Contamination fact	tor (C _f) and degree	of contamination	(C _d) in the
sediment				

			C _f				
Location	Cr	Ni	Pb	Zn	Cd	Cu	C _d
1	0.10	0.97	1.52	0.50	4.34	0.10	7.53
2	0.11	0.81	1.92	0.51	4.20	0.13	7.68
3	0.09	0.75	2.12	0.55	3.92	0.14	7.58
4	0.13	0.86	1.66	0.44	4.40	0.12	7.61
5	0.12	0.88	2.03	0.49	4.64	0.14	8.30
Average	0.11	0.85	1.85	0.50	4.30	0.13	

Citation: Ojo, Taiwo J et al. Ijsrm.Human, 2016; Vol. 5 (2): 58-64.

Contamination factor and degree of contamination, descriptive table 3.0 and 4.0 are used to categorize them. Cd is greater than 3 and less than 6 which indicated that it is considerably contaminated while Pb is greater than 1 and less than 3 which indicated moderate contamination. Cr, Ni, Zn and Cu were less than 1 which indicated low contamination.

The results observed from Table 6, the contamination degrees of location 1,2,3 and 4 were less than 8 which indicated that they were within low degree of contamination. The contamination degree of location 5 is greater than 8 but less than 16 which indicated moderate degree of contamination. The average contamination degree of all soil samples was 8.45, which suggested that they were within moderate degree of contamination. The order of contamination degree of each sampling area was5>2>4>3>1.

Table 7: Result for Ecological Risk factor(E_r) and Potential Ecological Risk index (I_r) in the sediment

		Er					
Location	Cr	Ni	Pb	Zn	Cd	Cu	Ir
1	0.20	4.85	7.60	0.50	130.20	0.50	143.85
2	0.22	4.05	9.60	0.51	126.00	0.65	141.03
3	0.20	3.75	10.60	0.55	117.60	0.70	133.40
4	0.26	4.30	8.30	0.44	132.00	0.60	145.90
5	0.24	4.40	10.15	0.49	139.20	0.70	155.18
Average	0.22	4.27	9.25	0.50	129.0	0.63	

According to Table 7, the potential ecological risk factor of Cr, Ni, Pb, Zn and Cu were much less than 40, indicating low ecological risk. The potential ecological risk factor of Cd was greater than 80 and less than 160, indicating considerable potential ecological risk. The order of the potential ecological risk factor of heavy metals was Cd>Pb>Ni>Cu>Cr. The potential ecological risk index for each location was in the order of 5>4>1>2>3. In addition, the potential ecological risk index for location 1, 2, 3, and 4 was less than 150, indicating that the potential ecological risk was low. Among them, the I_r value of location 5 was greater than 150, indicating moderate potential ecological risk index.

The concentrations of Cr, Ni, Pb, Zn, Cd, and Cu in the sediment were low, so their potential ecological risks were far lower than other heavy metals and exerted no potential harm to environment except Cd which is of great concern.

4.0 CONCLUSION

The *Igeo* values suggest that the soil samples were uncontaminated-moderate with the heavy metals. The assessment results show that the contamination degree from considerable to low in soil which is Cd>Pb>Ni>Zn>Cu>Cr.

The potential ecological risk index for each location is in the order of 5>4>1>2>3. The order of the potential ecological risk factor of heavy metals is Cd>Pb>Ni>Cu>Zn>Cr.

REFERENCES

[1] CHEN Jian-qun, WANG Zhen-xing, WU Xie, ZHU Jian-jun, ZHOU Wen-bin. Source and hazard identification of heavy metals in soils of Changsha based on TIN model and direct exposure method [J]. Transactions of Nonferrous Metals Society of China, 21(3):642–651. (2011)

[2] H.S LIM, J.S LEE, H.T CHONG, M SAGER. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea [J]. Journal of Geochemical Exploration, 96(2–3): 223–230. (2008)

[3] L.G Fernandez and H.Y Olalla, "Toxicity and bioaccumulation of lead and cadmium in marine protozoan communities", *Ecotoxicology and Environmental Safety*, vol. 47, pp. 266-276, (2000).

[4] Y Chen, C Wang, Z Wang. Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environ. Intern, 31: 777-783. (2005)

[5] J.C Akan, F.I Abdulrahaman, O.A Sodipo, A.G Lange. Physicochemical parameters in soil and vegetable samples from Gongulon Agricultural site, Maiduguri, Borno state, Nigeria. J. Am. Sci., 6: 12. (2010)

[6] P Zhuang, M.B McBride, H Xia, H Li, Z Li. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ. Geochem. Health, 31: 707-715. (2008)

[7] A Kabata-Pendias, A.B Mukherjee. Trace elements from soil to human. NewYork: Springer-Verlag, (2007).

[8] G Muller, Index of geoaccumulation in sediments of the Rhine River. *Geojournal*, 2(3), 108-118. (1996)

[9] L. Hakanson, An ecological risk index for aquatic pollution control. A sedimentological approach. *Water Resources*, 28, 975-1001. (1980)