Thermal and Non-Thermal Microwave Absorption in Long Bone

Mona A. El Naggar*, Medhat A. Messiery

Engineering Physics and Maths. Dept., Fac. of Engineering, Cairo University, Egypt.

Keywords: Mathematical Model, Dissipated Power Density, Stored Power density, Cortical Bone, Bone marrow, Microwave exposure, EMF radiation, EMF strengths, Frequency dependence

ABSTRACT

The present work introduces a mathematical model, based on Maxwell’s equations, to trace the penetration of EMF within the frequency range (1MHz-10GHz) through long bone and bone marrow. The mathematical model is employed with special emphasis on the real and imaginary components of power absorbed. This model adopts the current reported electromagnetic properties to produce the complex permittivity, reflection and transmission coefficients. The model calculates the amount of dissipated power and that stored due to far field microwave exposure to electric field (1V/m-2kV/m). The results obtained are compared to the accepted standards of safety limits. Accordingly, for electric field strengths less than 2kV/m and frequency 10GHz, the power absorbed is within the reported standards. However, both tissues store a considerable amount of power density which could lead to thermal and non-thermal effects.
1. INTRODUCTION

Recently, the indispensable microwave applications have been intensified the level of environmental electromagnetic radiation. The assessment of its biological effects has become a wide field of research [1-5]. This is hindered, firstly by the lack of accurate data for the biological properties, secondly by the difficulties in assessing the whole body radiation exposure. Thirdly, the human response to microwave exposure is diverse and still a potent source of controversy.

The specific absorption rate (SAR), is the most acknowledged quantity for international standardization. These assessments are implemented by animal experimentations [6, 7], phantom model measurements [8-11] and mathematical approaches. The latter employs either deterministic mathematical derivations [12-15], stochastic modeling [16], or computer simulations [17].

The aim of the current study is to introduce an analytical approach to calculate the average power density absorbed, both stored and dissipated, within cortical bone and bone marrow. Hence, the produced results are analyzed in the light of thermal and non-thermal biological effects.

2. MATHEMATICAL METHODOLOGY

The present work is an extension of a previous model introduced by the author M. A. El-Naggar[14]. This model employs a mathematical one that traces the far field microwave propagation through long bone. Maxwell’s equations are employed and the reported physical electromagnetic properties of cortical bone and bone marrow, [18-24], are implemented. The model assumes the incidence of an electromagnetic wave on a homogeneous multilayer long bone section (bone-marrow-bone). Assuming the wave propagates along the normal direction to the sample surface (x-direction), the electric field component is along the y-direction of strengths (1V/m-2kV/m) and frequency varying in the range (1MHz-10GHz). A bone sample of 1mm² surface area, consisting of 3mm thickness cortical bone within which a 5mm bone marrow lies, is assumed. The average power density is calculated for both the cortical bone, P_{bone}, and the marrow, P_{marrow}, in the frequency range assumed for the different electric field strengths. The reflection on successive interfaces contributes to the overall calculated power.
The electrical and magnetic properties of the media are considered as complex functions of frequency, namely; permittivity, \(\varepsilon(f) \), conductivity, \(\sigma(f) \), and permeability, \(\mu(f) \).

The average power density \(P_{ave} \) is calculated for the \(i^{th} \) layer as:

\[
P_{ave} = \frac{1}{L_i} \int_0^{L_i} \frac{1}{t} \left[\int_0^T [E_i(x,t)]^2 dt \right] dx
\]

\[
P_{ae}(x,t) = E_{ji}(x,t) \times H_{ej}(x,t)
\]

Mathematical analysis calculates the electric and magnetic field distributions in the three consecutive layers. The detailed mathematical analysis is given in Appendix 1.

3. RESULTS

Computations are performed using Maple-V software. The program computes the total electric and magnetic fields and the power absorbed (both dissipated, \(P_{diss} \), and that stored, \(P_{str} \) in respective layers. Horizontally polarized EM fields are assumed to be normally incident. Hence, the power density function is calculated in w/m\(^2\). Figures (1-a,1-b) illustrate the variation of power density, both dissipated and stored versus the frequency, in log scale, for electric field strengths ranging; 1V/m-100V/m.
Figures (2-a, 2-b) represent the distribution of the power density, both dissipated and stored in the marrow layer versus frequency, in log scale. Figure 3 shows the distribution of the power density ratio of that absorbed in the marrow layer to that absorbed in the bone layer, in dB, versus log(f).

Fig 2-a log(Pdiss) vs log(f) within the bone marrow Fig 2-b log(Pstr) vs log (f) within the bone marrow

Fig 3.10log(P_{marrow}/P_{bone}) vs log(f) and E_0 for bone for normal incidence

In the case of oblique incidence, at angles 30° and 45°, on cortical bone, figures (4-a, 4-b) illustrate the rise of power density dissipated and that absorbed versus frequency, in log scale, for electric field strength 50 V/m. Figures (5-a, 5-b) illustrate the rise of power density dissipated and absorbed, versus frequency, in log scale, for electric field strengths 50 V/m for bone marrow in case of oblique incidence for the same angles.

4. DISCUSSION

The main aim of the present work is to build up a mathematical model to calculate the power dissipated and stored in bone and bone marrow due to environmental electromagnetic exposure. Hence the results obtained can be compared with the international safety standards. The frequency range, (1MHz-10GHz), is chosen within that employed by most applications e.g. Wi-Fi, Bluetooth, mobile antenna, etc. The electric field exposure is taken to comply
with its average values emitted by these sources (1V/m-2KV/m). The present calculations considered the complex nature of the dielectric constant and its relation to the dissipated and stored power density in both cortical bone and bone marrow. Fig.1a shows that the dissipated power density is not significantly frequency dependent whereas it considerably increases with the increase of incident electric field. Similar behavior is observed with the stored power density, fig.1b, with a noticeable valley at frequency range (2GHz-3GHz) which is consistent with all chosen electric field values. On the other hand, the stored power density distribution, in bone marrow, exhibit a rise at frequencies higher than 100MHz (fig. 2b). Fig 3 shows the variation of the relative average power density absorbed in marrow to that in bone, expressed in dB, with the frequency. The relation exhibits a peak at 100MHz and a valley around the frequencies (900MHz-3GHz).

In the above figures the electromagnetic field is assumed to be normally incident on bone sample. As the angle of incidence varies (30° and 45°) fig.4a and fig.4b show the effect on both dissipated and stored power density as calculated at 50v/m. Considering that the present work analysis adopts the TM mode, it is noteworthy that there is no apparent effect observed on the power density as incidence angle changes in this range. For marrow, similar figures are produced (fig.5a, fig.5b); dissipated power density exhibits a peak at frequency 10MHz and a minimum at 2.5GHZ, and almost similar behavior is reported for the stored power density.

5. CONCLUSION

According to the present work, thermal effects are accounted for by the real component of the average electromagnetic power absorbed in biological tissue, whereas the non-thermal effects are accounted for by the imaginary component. From the results produced here, we conclude that the far-field exposure caused by electromagnetic pollution would possibly produce power density in cortical bone and marrow that is still within the permissible ranges of public exposure[25-28]. Table 1 illustrates both the present work values and international standards. The values obtained are still lower than the international safety standards providing that the electric field strength doesn’t exceed 2Kv/m and frequency 10GHz. The dissipated power density in the marrow, believed to be the main source of thermal effect, depends on both the incident electric field and its frequency, with a little dependence on the angle of incidence.
The present work shows the importance of the power stored in both bone and bone marrow. We believe that this power is responsible for the non-thermal effects that are still a main source of debate. Unfortunately, there are no reported safety guidelines for these effects.

It is noteworthy that the validity of the present model depends on the physical electromagnetic constants of both cortical bone and bone marrow. During the preliminary work, we concluded that the skin effect for both bone and marrow is insignificant, as far as the power dissipated or stored is concerned. However, the power penetration depends on the thickness of each layer. Particular concern should be given to the children under the age of five, whose bones are relatively thin with different electromagnetic properties than adults. This makes them vulnerable to harmful effects due to microwave exposure.

Table 1. Illustration of the present work values and the international standards.

<table>
<thead>
<tr>
<th>Establishment</th>
<th>Exposure</th>
<th>Frequency (Hz)</th>
<th>Permissible Limits (W/m²)</th>
<th>Present Work(W/m²) (calculated at 2kV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bone P<sub>diss</sub> P<sub>str</sub></td>
<td>Bone P<sub>diss</sub> P<sub>str</sub></td>
</tr>
<tr>
<td>ICNIRP [26,27]</td>
<td>Public</td>
<td>900M 4.5</td>
<td>0.829 0.129 0.527 0.070</td>
<td>65 41 06 41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8G 9</td>
<td>0.858 0.100 0.532 0.076</td>
<td>66 47 14 77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.45G 10</td>
<td>0.809 0.034 0.508 0.175</td>
<td>56 07 36 63</td>
</tr>
<tr>
<td>Occupational</td>
<td>Public</td>
<td>900M 22.5</td>
<td>---- ---- ---- ----</td>
<td>---- ---- ---- ----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8G 45</td>
<td>---- ---- ---- ----</td>
<td>---- ---- ---- ----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.45G --</td>
<td>---- ---- ---- ----</td>
<td>---- ---- ---- ----</td>
</tr>
<tr>
<td>WHO[28]</td>
<td>Public</td>
<td>10M-10G Head 4</td>
<td>1.152 0.050 0.545 0.005</td>
<td>96 14 8 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10M-10G Limb 10</td>
<td>0.717 0.304 0.228 0.396</td>
<td>69 6 7 9</td>
</tr>
<tr>
<td>Occupational</td>
<td>Public</td>
<td>10M-10G Head 20</td>
<td>---- ---- ---- ----</td>
<td>---- ---- ---- ----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10M-10G Limb 50</td>
<td>---- ---- ---- ----</td>
<td>---- ---- ---- ----</td>
</tr>
</tbody>
</table>

REFERENCES

Appendix 1

The complex form of the permittivity is given as, \(\varepsilon(f) = \varepsilon' - j\varepsilon'' \), refractive index, \(n(f) = \sqrt{\varepsilon(f)} \). Reflection and transmission coefficients for the \(i^{th} \) layer are:

\[
\eta_{ri}(f) = \frac{\sqrt{\varepsilon_{i+1}(f)/\varepsilon_{i}(f)}}{\sqrt{\varepsilon_{i+1}(f)+(\varepsilon_{i+1}(f)\cos\theta_i/\cos\theta_{i+1})}} \left(\frac{2}{\sqrt{\varepsilon_{i+1}(f)+(\varepsilon_{i+1}(f)\cos\theta_i/\cos\theta_{i+1})}}\right)
\]

(3)

\[
\eta_{ri}(f) = \frac{1 - \sqrt{\varepsilon_{i+1}(f)/\varepsilon_{i}(f)}}{1 + \sqrt{\varepsilon_{i+1}(f)/\varepsilon_{i}(f)}} \left(\frac{2}{1 + \sqrt{\varepsilon_{i+1}(f)/\varepsilon_{i}(f)}}\right)
\]

(4)

\[
E_{xi}(x, t) = E_{zi} \times e^{(2\pi ft - k_x x)}
\]

(5)

\[
H(x, t) = \sqrt{\mu_1(f)/\varepsilon_{i}(f)} E_{zi} \times e^{(2\pi ft - k_x x)}
\]

(6)

Where the suffix \(i \), \(i - 1 \) and \(i + 1 \) denote current, preceding and succeeding layers respectively. The incident polarized electric field is assumed to be propagating in the \(x \)-direction making an angle \(\theta_i \) with the normal to the interface surface.

The anterior bone layer is denoted as layer 1, the bone marrow as layer 2, and the posterior bone layer as 3. At the interface from air to layer 1, the electric field has two components, horizontal and parallel to the interface, while the magnetic field has only one horizontal component. To avoid redundancy of equations, the transmitted and reflected components of the electromagnetic field through layer 2 are:

\[
E_{r_x}(x, t) = t_{x1}(f) t_{x2}(f) E_0 e^{-\beta_1 \frac{dx}{2} + i(2\pi f t - k_x x + k_1 dx_1)}
\]

(7)

\[
E_{r_x}(x, t) = t_{x1}(f) t_{x2}(f) \eta_{12}(f) E_0 e^{-\beta_1 \frac{dx}{2} - \beta_2 \frac{dx}{2} + i(2\pi f t + k_2 x + k_1 dx_1 + \pi)}
\]

(8)
\[H_{r1}(x,t) = t_{h1}(f) t_{h2}(f) \sqrt{\mu_2(f) e_2(f)} E_0 \cos(\theta_{z2}) e^{-\delta_1(f) \frac{\Delta x_1}{2} + i(2\pi f t - k_2 x + k_1 \Delta z_1)} \] (9)

\[H_{r2}(x,t) = t_{h1}(f) t_{h2}(f) \eta_{h2}(f) \sqrt{\mu_2(f) e_2(f)} E_0 \cos(\theta_{z2}) e^{-\delta_1(f) \frac{\Delta x_1}{2} - \delta_1(f) \frac{\Delta x_2}{2} + i(2\pi f t + k_2 x + k_1 \Delta z_1 + \pi)} \] (10)

\[H_{t12}(x,t) = t_{v1}(f) t_{v2}(f) \sqrt{\mu_2(f) e_2(f)} E_0 \sin(\theta_{z2}) e^{-\delta_1(f) \frac{\Delta x_1}{2} + i(2\pi f t - k_2 x)} \] (11)

\[H_{r2}(x,t) = t_{v1}(f) t_{v2}(f) \eta_{v2}(f) \sqrt{\mu_2(f) e_2(f)} E_0 \sin(\theta_{z2}) e^{-\delta_1(f) \frac{\Delta x_1}{2} - \delta_1(f) \frac{\Delta x_2}{2} + i(2\pi f t + k_2 x + k_1 \Delta z_1 + \pi)} \] (12)

Where \(\delta_1(f) \) and \(\delta_2(f) \) are the absorption coefficients, \(k_1(f) \) and \(k_2(f) \) are wave numbers of the successive media.